Advertisement

Local Clustering Patterns in Polar Coordinate for Face Recognition

  • Chih-Wei LinEmail author
  • Kuan-Yin Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9431)

Abstract

Facial recognition is an important issue and has various practical applications in visual surveillance system. In this paper, we propose a novel local pattern descriptor called the Local Clustering Pattern (LCP) with low computational cost operating in the polar coordinate system for recognizing face. The local derivative variations with multi-direction are considered and that are integrated on the pairwise combinatorial direction. To generate the discriminative local pattern, the features of local derivative variations are transformed into the polar coordinate system by generating the characteristics of distance (r) and angle (\(\theta \)). LCP is ensemble of several decisions from the clustering algorithm for each pixel in the polar coordinate system (P.C.S.). Differs from the existing local pattern descriptors, such as local binary pattern (LBP) [1, 8], local derivation pattern (LDP) [11], and local tetra pattern (LTrP) [7], LCP generates the discriminative local clustering pattern with low-order derivative space and low computational cost which are stable in the process of face recognition. The performance of the proposed method is compared with LBP, LDP, LTrP on the Extended Yale B [4, 5] and CAS-PEAL [3] databases.

Keywords

Local pattern descriptors Local clustering pattern (LCP) Rectangular coordinate system (R.C.S.) Polar coordinate system (P.C.S.) 

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The caspeal large-scale chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(1), 149–161 (2008)CrossRefGoogle Scholar
  4. 4.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  5. 5.
    Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)CrossRefGoogle Scholar
  6. 6.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)CrossRefGoogle Scholar
  7. 7.
    Murala, S., Maheshwari, R., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Swets, D.L., Weng, J.J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 8, 831–836 (1996)CrossRefGoogle Scholar
  10. 10.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  11. 11.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Computer and Information SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations