Advertisement

Simultaneous Camera, Light Position and Radiant Intensity Distribution Calibration

  • Marco Visentini-ScarzanellaEmail author
  • Hiroshi Kawasaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9431)

Abstract

We propose a practical method for calibrating the position and the Radiant Intensity Distribution (RID) of light sources from images of Lambertian planes. In contrast with existing techniques that rely on the presence of specularities, we prove a novel geometric property relative to the brightness of Lambertian planes that allows to robustly calibrate the illuminant parameters without the detrimental effects of view-dependent reflectance and a large decrease in complexity. We further show closed form solutions for position and RID of common types of light sources. The proposed method can be seamlessly integrated within the camera calibration pipeline, and its validity against the state-of-the-art is shown both on synthetic and real data.

Keywords

Maximal Point Camera Calibration Reflectance Function Photometric Stereo Point Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by The Japanese Foundation for the Promotion of Science, Grant-in-Aid for JSPS Fellows no.26.04041.

References

  1. 1.
    Ciuti, G., Visentini-Scarzanella, M., Dore, A., Menciassi, A., Dario, P., Yang, G.Z.: Intra-operative monocular 3D reconstruction for image-guided navigation in active locomotion capsule endoscopy. In: IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 768–774 (2012)Google Scholar
  2. 2.
    Collins, T., Bartoli, A.: 3D Reconstruction in laparoscopy with close-range photometric stereo. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 634–642. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Drbohlav, O., Chaniler, M.: Can two specular pixels calibrate photometric stereo? In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1850–1857, October 2005Google Scholar
  4. 4.
    Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-D modeling. In: IEEE International Conference on Computer Vision (ICCV), pp. 1234–1241, September 2009Google Scholar
  5. 5.
    Liao, M., Wang, L., Yang, R., Gong, M.: Light fall-off stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, June 2007Google Scholar
  6. 6.
    Maier-Hein, L., Groch, A., Bartoli, A., Bodenstedt, S., Boissonnat, G., Chang, P.L., Clancy, N., Elson, D., Haase, S., Heim, E., Hornegger, J., Jannin, P., Kenngott, H., Kilgus, T., Muller-Stich, B., Oladokun, D., Rohl, S., dos Santos, T., Schlemmer, H.P., Seitel, A., Speidel, S., Wagner, M., Stoyanov, D.: Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction. IEEE Trans. Med. Imag. 33(10), 1913–1930 (2014)CrossRefGoogle Scholar
  7. 7.
    Malti, A., Bartoli, A., Collins, T.: Template-based conformal shape-from-motion-and-shading for laparoscopy. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 1–10. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Mecca, R., Wetzler, A., Bruckstein, A.M., Kimmel, R.: Near field photometric stereo with point light sources. SIAM J. Imag. Sci. 7(4), 2732–2770 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Moreno, I., Sun, C.C.: Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation. Measur. Sci. Technol. 20(7), 075306 (2009). http://stacks.iop.org/0957-0233/20/i=7/a=075306 CrossRefGoogle Scholar
  10. 10.
    Park, J., Sinha, S., Matsushita, Y., Tai, Y.W., Kweon, I.S.: Multiview photometric stereo using planar mesh parameterization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1161–1168, December 2013Google Scholar
  11. 11.
    Park, J., Sinha, S., Matsushita, Y., Tai, Y.W., Kweon, I.S.: Calibrating a non-isotropic near point light source using a plane. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2267–2274, June 2014Google Scholar
  12. 12.
    Park, J., Sinha, S., Matsushita, Y., Tai, Y.W., Kweon, I.S.: Supplementary material for: ‘calibrating a non-isotropic near point light source using a plane’, June 2014Google Scholar
  13. 13.
    Powell, M., Sarkar, S., Goldgof, D.: A simple strategy for calibrating the geometry of light sources. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 1022–1027 (2001)CrossRefGoogle Scholar
  14. 14.
    Rykowski, R., Kostal, H.: Novel approach for led luminous intensity measurement. In: Conference of Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 6910, February 2008Google Scholar
  15. 15.
    Schnieders, D., Wong, K.Y.K.: Camera and light calibration from reflections on a sphere. Comput. Vis. Image Underst. 117(10), 1536–1547 (2013)CrossRefGoogle Scholar
  16. 16.
    Simons, R., Bean, A.: Lighting Engineering: Applied Calculations. Routeledge, London (2012)Google Scholar
  17. 17.
    Stoyanov, D., Elson, D., Yang, G.Z.: Illumination position estimation for 3D soft-tissue reconstruction in robotic minimally invasive surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2628–2633, October 2009Google Scholar
  18. 18.
    Takai, T., Niinuma, K., Maki, A., Matsuyama, T.: Difference sphere: an approach to near light source estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I-98-I-105, June 2004Google Scholar
  19. 19.
    Tan, H.Y., Ng, T.W.: Light-emitting-diode inspection using a flatbed scanner. Opt. Eng. 47(10), 103602–103602 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tankus, A., Sochen, N., Yeshurun, Y.: Reconstruction of medical images by perspective shape-from-shading. Int. Conf. Pattern Recogn. (ICPR) 3, 778–781 (2004)Google Scholar
  21. 21.
    Visentini-Scarzanella, M., Hanayama, T., Masutani, R., Yoshida, S., Kominami, Y., Sanomura, Y., Tanaka, S., Furukawa, R., Kawasaki, H.: Tissue shape acquisition with a hybrid structured light and photometric stereo endoscopic system. In: Luo, X., Reichl, T., Reiter, A., Mariottini, G.L. (eds.) Computer-Assisted and Robotic Endoscopy (CARE). LNCS, pp. 26–37. Springer, Heidelberg (2015)Google Scholar
  22. 22.
    Visentini-Scarzanella, M., Stoyanov, D., Yang, G.Z.: Metric depth recovery from monocular images using shape-from-shading and specularities. In: IEEE International Conference on Image Processing (ICIP), Orlando, USA, pp. 25–28 (2012)Google Scholar
  23. 23.
    Vogiatzis, G.: Self-calibrated, multi-spectral photometric stereo for 3D face capture. Int. J. Comput. Vis. 97(1), 91–103 (2012)CrossRefGoogle Scholar
  24. 24.
    Weber, M., Cipolla, R.: A practical method for estimation of point light-sources. In: British Machine Vision Conference (BMVC), pp. 1–10, September 2001Google Scholar
  25. 25.
    Wong, K.-Y.K., Schnieders, D., Li, S.: Recovering Light Directions and Camera Poses from a Single Sphere. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 631–642. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Wu, C., Narasimhan, S.G., Jaramaz, B.: A multi-image shape-from-shading framework for near-lighting perspective endoscopes. Int. J. Comput. Vis. 86, 211–228 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhou, W., Kambhamettu, C.: A unified framework for scene illuminant estimation. Image Vis. Comput. 26(3), 415–429 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Vision and Graphics LaboratoryKagoshima UniversityKagoshimaJapan

Personalised recommendations