Pacific-Rim Symposium on Image and Video Technology

Image and Video Technology pp 447-460 | Cite as

6-DOF Direct Homography Tracking with Extended Kalman Filter

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9431)

Abstract

This paper considers a robust direct homography tracking that takes advantage of the known intrinsic parameters of the camera to estimate its pose in real scale, to speed-up the convergence, and to drastically increase the robustness of the tracking. Indeed, our new formulation for direct homography tracking allows us to explicitly solve a 6 Degrees Of Freedom (DOF) rigid transformation between the plane and the camera. Furthermore, it simplifies the integration of the Extended Kalman Filter (EKF) which allows us to increase the computational speed and deal with large motions. For the sake of robustness, our approach also includes a pyramidal optimization using an Enhanced Correlation Coefficient (ECC) based objective function. The experiments show the high efficiency of our approach against state of the art methods and under challenging conditions.

Keywords

ECC Homography tracking Pose estimation EKF 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0028680).

References

  1. 1.
    Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1858–1865 (2008)CrossRefGoogle Scholar
  2. 2.
    Dame, A., Marchand, E.: Accurate real-time tracking using mutual information. In: ISMAR (2010)Google Scholar
  3. 3.
    Scandaroli, G.G., Meilland, M., Richa, R.: Improving NCC-based direct visual tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 442–455. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: IROS (2004)Google Scholar
  5. 5.
    Li, P., Chaumette, F., Tahri, O.: A shape tracking algorithm for visual servoing. In: ICRA (2005)Google Scholar
  6. 6.
    Mondragon, I., Campoy, P., Martinez, C., Olivares-Mendez, M.: 3d pose estimation based on planar object tracking for uavs control. In: ICRA (2010)Google Scholar
  7. 7.
    Kusuma Negara, G.P., Teck, F.W., Yiqun, L.: Hybrid feature and template based tracking for augmented reality application. In: Shan, S., Jawahar, C.V., Jawahar, C.V. (eds.) ACCV 2014 Workshops. LNCS, vol. 9010, pp. 381–395. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Park, Y., Lepetit, V., Woo, W.: Handling motion-blur in 3d tracking and rendering for augmented reality. IEEE Trans. Vis. Comput. Graphics 18(9), 1449–1459 (2012)CrossRefGoogle Scholar
  9. 9.
    Sorenson, H.W.: Kalman Filtering: Theory and Application. IEEE Press, New York (1985)Google Scholar
  10. 10.
    Broida, T., Chandrashekhar, S., Chellappa, R.: Recursive 3-d motion estimation from a monocular image sequence. IEEE Trans. Aerosp. Electron. Syst. 26(4), 639–656 (1990)CrossRefGoogle Scholar
  11. 11.
    Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: fast semi-direct monocular visual odometry. In: ICRA (2014)Google Scholar
  12. 12.
    Silveira, G., Malis, E.: Real-time visual tracking under arbitrary illumination changes. In: CVPR (2007)Google Scholar
  13. 13.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Industr. Appl. Math. 11(12), 431–441 (1963)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82(1), 35–45 (1960)Google Scholar
  15. 15.
    Lieberknecht, S., Benhimane, S., Meier, P., Navab, N.: A dataset and evaluation methodology for template-based tracking algorithms. In: ISMAR (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Robotics and Computer Vision LaboratoryKAISTDaejeonSouth Korea

Personalised recommendations