Pacific-Rim Symposium on Image and Video Technology

Image and Video Technology pp 368-379 | Cite as

Enhanced Phase Correlation for Reliable and Robust Estimation of Multiple Motion Distributions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9431)


Phase correlation is one of the classic methods for sparse motion or displacement estimation. It is renowned in the literature for high precision and insensitivity against illumination variations. We propose several important enhancements to the phase correlation (PhC) method which render it more robust against those situations where a motion measurement is not possible (low structure, too much noise, too different image content in the corresponding measurement windows). This allows the method to perform self-diagnosis in adverse situations.

Furthermore, we extend the PhC method by a robust scheme for detecting and classifying the presence of multiple motions and estimating their uncertainties. Experimental results on the Middlebury Stereo Dataset and on the KITTI Optical Flow Dataset show the potential offered by the enhanced method in contrast to the PhC implementation of OpenCV.


Optical flow Motion estimation Phase correlation 


  1. 1.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  2. 2.
    Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)CrossRefGoogle Scholar
  3. 3.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Intern. J. C.V. 47(1–3), 7–42 (2002)MATHGoogle Scholar
  4. 4.
    Pratt, W.K.: Correlation techniques of image registration. IEEE Trans. Aerosp. Electron. Syst. AES–10(3), 353–358 (1974)CrossRefGoogle Scholar
  5. 5.
    Kuglin, C.D., Hines, D.C.: The Phase Correlation Image Alignment Method. In: Proceedings of the International Conference on Cybernetics and Society, pp. 163–165 (1975)Google Scholar
  6. 6.
    Kumar, B.V.K., Hassebrook, L.: Performance measures for correlation filters. Appl. Opt. 29(20), 2997–3006 (1990)CrossRefGoogle Scholar
  7. 7.
    Greenfeld, J.S.: An operator-based matching system. Photogram. Eng. Remote Sens. 8(57), 1049–1055 (1991)Google Scholar
  8. 8.
    Tian, Q., Huhns, M.N.: Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 35(2), 220–233 (1986)CrossRefGoogle Scholar
  9. 9.
    Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)CrossRefGoogle Scholar
  10. 10.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  11. 11.
    Pearson, J.J., Hines, D.C., Golosman, S., Kuglin, C.D.: Video-rate image correlation processor. In: Proceedings of Application of Digital Image Processing, pp. 191–205 (1977)Google Scholar
  12. 12.
    Takita, K., Sasaki, Y., Higuchi, T., Kobayashi, K.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundam. Electron. Commun. 86(8), 1925–1934 (2003)Google Scholar
  13. 13.
    Takita, K., Muquit, M.A., Aoki, T., Higuchi, T.: A subpixel correspondence search technique for computer vision applications. IEICE Trans. Fundam. Electron. Commun. E87–A(8), 1913–1923 (2004)Google Scholar
  14. 14.
    Kirichuk, V.S., Peretjagin, G.I.: Establishing similarity between fragments and a standard. Optoelectron. Instrum. Data Process. 22(4), 83–87 (1986)Google Scholar
  15. 15.
    Fleet, D.J.: Disparity from local weighted phase-correlation. In: proceedings of the International Conference on Systems, Man and Cybernectis, pp. 48–56 (1994)Google Scholar
  16. 16.
    Stone, H.S., Orchard, M., Chang, E.C., Martucci, S.: A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 39(10), 2235–2243 (2001)CrossRefGoogle Scholar
  17. 17.
    Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)CrossRefGoogle Scholar
  18. 18.
    Jung, I.K., Lacroix, S.: High resolution terrain mapping using low altitude aerial stereo imagery. In: proceedings of the International Conference on Computer Vision, pp. 946–951 (2003)Google Scholar
  19. 19.
    Abdelfattah, R., Nicolas, J.M., Tupin, F.: Interferometric SAR image coregistration based on the Fourier Mellin invariant descriptor. IEEE Int. Geosci. Remote Sens. Symp. 3, 1334–1336 (2002)CrossRefGoogle Scholar
  20. 20.
    Eisenbach, J., Mertz, M., Conrad, C., Mester, R.: Reducing camera vibrations and photometric changes in surveillance video. In: proceedings of the International Conference on Advanced Video and Signal Based Surveillance, pp. 69–74 (2013)Google Scholar
  21. 21.
    Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)CrossRefGoogle Scholar
  22. 22.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: proceedings of Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)Google Scholar
  23. 23.
    Morgan, G.L.K., Jian, G.L., Yan, H.: Precise subpixel disparity measurement from very narrow baseline stereo. IEEE Trans. Geosci. Remote Sens. 48(9), 3424–3433 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.VSI LabGoethe UniversityFrankfurt am MainGermany
  2. 2.CVL, ISYLinköping UniversityLinköpingSweden

Personalised recommendations