Advertisement

Color Conversion for Color Blindness Employing Multilayer Neural Network with Perceptual Model

  • Hideaki OriiEmail author
  • Hideaki Kawano
  • Noriaki Suetake
  • Hiroshi Maeda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9431)

Abstract

In this paper, we propose a novel digital image color conversion algorithm for color blindness using a multilayer neural network. The symptoms of “color blindness” are due to an innate lack or deficit of cone cells that recognize colors, and people with color blindness have difficulty discriminating combinations of specific colors. Those people require color conversion for the presented image such that the image can be a perceptible color representation. In the proposed method, we design a multilayer neural network composed of three building blocks: layers for image color conversion, layers for perceptual model of color blindness, and layers for color discrimination. In proposed framework, a neural network is learning about a relationship of an image data and a discrimination performance of colors in an image, and a color conversion rule is trained as a part of a neural network. To validate the effectiveness of proposed method, it is applied to several images that have various color combinations.

Keywords

Color conversion Neural network Color blindness 

Notes

Acknowledgments

This work was supported in part by funds (No. 157202) and (No. 155006) from the Central Research Institute of Fukuoka University.

References

  1. 1.
    Rasche, K., Geist, R., Westall, J.: Detail preserving reproduction of color images for monochromats and dichromats. IEEE Comput. Graph. Appl. 25(3), 22–30 (2005)CrossRefGoogle Scholar
  2. 2.
    Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. Comput. Graph. Forum 24(3), 423–432 (2005)CrossRefGoogle Scholar
  3. 3.
    Huang, J.B., Tseng, Y.C., Wu, S.I., Wang, S.J.: Information preserving color transformation for protanopia and deuteranopia. IEEE Signal Process. Lett. 14(10), 711–714 (2007)CrossRefGoogle Scholar
  4. 4.
    Tanaka, G., Suetake, N., Uchino, E.: Lightness modification of color image for protanopia and deuteranopia. Opt. Rev. 17(1), 14–23 (2010)CrossRefGoogle Scholar
  5. 5.
    Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe, S., Fukami, K.: Web-page color modification for barrier-free color vision with genetic algorithm. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2724, pp. 2134–2146. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe S., Fukami K.: Preliminary study on color modification for still images to realize barrier-free color vision. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 36–41 (2004)Google Scholar
  7. 7.
    Meguro, M., Takahashi, C., Koga, T.: Simple color conversion method to perceptible images for color vision deficiencies. In: Proceedings of SPIE, vol. 6057, pp. 1–11 (2006)Google Scholar
  8. 8.
    Smith, V.C., Pokorny, J.: Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vis. Res. 15(2), 161–171 (1975)CrossRefGoogle Scholar
  9. 9.
    Viénot, F., Brettel, H., Mollon, J.D.: Digital video colourmaps for checking the legibility of displays by dichromats. Color Res. Appl. 24(4), 243–252 (1999)CrossRefGoogle Scholar
  10. 10.
    Suetake, N., Tanaka, G.: Color transformation techniques for gamuts of lower dimension -color transformation for monochrome display / print and dichromacy-. IEICE Fundam. Rev. 6(2), 102–113 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hideaki Orii
    • 1
    Email author
  • Hideaki Kawano
    • 2
  • Noriaki Suetake
    • 3
  • Hiroshi Maeda
    • 2
  1. 1.Fukuoka UniversityJonan-kuJapan
  2. 2.Kyushu Institute of TechnologyKitakyushu-shiJapan
  3. 3.Yamaguchi UniversityYamaguchi-shiJapan

Personalised recommendations