Aerial Locomotion in Cluttered Environments

  • Dario FloreanoEmail author
  • Jean-Christophe Zufferey
  • Adam Klaptocz
  • Jürg Germann
  • Mirko Kovac
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 100)


Many environments where robots are expected to operate are cluttered with objects, walls, debris, and different horizontal and vertical structures. In this chapter, we present four design features that allow small robots to rapidly and safely move in 3 dimensions through cluttered environments: a perceptual system capable of detecting obstacles in the robot’s surroundings, including the ground, with minimal computation, mass, and energy requirements; a flexible and protective framework capable of withstanding collisions and even using collisions to learn about the properties of the surroundings when light is not available; a mechanism for temporarily perching to vertical structures in order to monitor the environment or communicate with other robots before taking off again; and a self-deployment mechanism for getting in the air and perform repetitive jumps or glided flight. We conclude the chapter by suggesting future avenues for integration of multiple features within the same robotic platform.


Optic Flow Torsion Spring Cluttered Environment Forward Flight Security Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



These works have been sponsored by several grants of the Swiss National Science Foundation, including the NCCR Robotics, by EPFL, and by the Science and Technology Division of Armasuisse.


  1. 1.
    R. Siegwart, D. Nourbakhsh, I. Scaramuzza, Introduction to Autonomous Mobile Robotics, 2nd edn. (MIT Press, 2011)Google Scholar
  2. 2.
    J.-C. Zufferey, Bio-inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers (EPFL/CRC Press, 2008)Google Scholar
  3. 3.
    N. Strausfeld, Atlas of an Insect Brain (Springer, 1976)Google Scholar
  4. 4.
    G. Taylor, H. Krapp, Sensory systems and flight stability: what do insects measure and why. Adv. Insect Physiol. 34, 231–316 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Srinivasan, M. Lehrer, W. Kirchner, S. Zhang, Range perception through apparent image speed in freely-flying honeybees. Vis. Neurosci. 6, 519–535 (1991)CrossRefGoogle Scholar
  6. 6.
    L. Tammero, M. Dickinson, The influence of visual landscape on the free flight behavior of the fruit fly drosophila melanogaster. J. Exp. Biol. 205, 327–343 (2002)Google Scholar
  7. 7.
    M. Egelhaaf, R. Kern, H. Krapp, J. Kretzberg, R. Kurtz, A. Warzechna, Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci. 25(2), 96–102 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Land, Visual acuity in insects. Annu. Rev. Entomol. 42, 147–177 (1997)CrossRefGoogle Scholar
  9. 9.
    P. Sobey, Active navigation with a monocular robot. Biol. Cybern. 71, 433–440 (1994)CrossRefGoogle Scholar
  10. 10.
    D. Coombs, M. Herman, T. Hong, M. Nashman, Real-time obstacle avoidance using central flow divergence and peripheral flow, in International Conference on Computer Vision (1995), pp. 276–283Google Scholar
  11. 11.
    J. Santos-Victor, G. Sandini, F. Curotto, S. Garibaldi, Divergent stereo for robot navigation: a step forward to a robotic bee. Int. J. Comput. Vis. 14, 159–177 (1995)CrossRefGoogle Scholar
  12. 12.
    M. Srinivasan, J. Chahl, K. Weber, S. Venkatesh, H. Zhang, in Robot Navigation Inspired by Principles of Insect Vision, ed. by A. Zelinsky. Field and Service Robotics (Springer, 1998), pp. 12–16Google Scholar
  13. 13.
    J. Serres, F. Ruffier, S. Viollet, N. Franceschini, Toward optic flow regulation for wallfollowing and centring behaviours. Int. J. Adv. Rob. Syst. 3(27), 147–154 (2006)Google Scholar
  14. 14.
    F. Ruffier, N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance. Robot. Auton. Syst. 50(4), 177–194 (2005)Google Scholar
  15. 15.
    T. Neumann, H. Blthoff, Behavior-oriented vision for biomimetic flight control, in Proceedings of the EPSRC/BBSRC International Workshop on Biologically Inspired Robotics (2002), pp. 196–203Google Scholar
  16. 16.
    L. Muratet, S. Doncieux, Y. Brire, J. Meyer, A contribution to vision-based autonomous helicopter flight in urban environments. Robot. Auton. Syst. 50(4), 195–209 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Humbert, J.K. Conroy, C. Neely, G. Barrows, Wide-Field Integration Methods for Visuomotor Control (Springer, 2009)Google Scholar
  18. 18.
    A. Beyeler, J. Zufferey, D. Floreano, Vision-based control of near-obstacle flight. Auton. Rob. 27(3), 201–219 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, 1950)Google Scholar
  20. 20.
    J. Koenderink, A. van Doorn, Facts on optic flow. Biol. Cybern. 56, 247–254 (1987)CrossRefzbMATHGoogle Scholar
  21. 21.
    J. Gibson, The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, 1979)Google Scholar
  22. 22.
    V. Braitenberg, Vehicles—Experiments In Synthetic Psychology (The MIT Press, Cambridge, MA, 1984)Google Scholar
  23. 23.
    A. Duchon, W.H. Warren, L. Kaelbling, Ecological robotics. Adapt. Behav. 6, 473–507 (1998)CrossRefGoogle Scholar
  24. 24.
    J. Zufferey, A. Beyeler, D. Floreano, Optic Flow to Steer and Avoid Collisions in 3D (Springer, 2009), pp. 73–86Google Scholar
  25. 25.
    J.-C. Zufferey, A. Klaptocz, A. Beyeler, J.-D. Nicoud, D. Floreano, A 10-gram vision-based flying robot. Adv. Robot. J. Robot. Soc. Jpn. 21(14), 1671–1684 (2007)CrossRefGoogle Scholar
  26. 26.
    J.-C. Zufferey, A. Beyeler, D. Floreano, Autonomous flight at low altitude using light sensors and little computational power. Int. J. Micro Air Veh. 2(2), 107–117 (2010)CrossRefGoogle Scholar
  27. 27.
    J.F. Roberts, T. Stirling, J.-C. Zufferey, D. Floreano, Quadrotor using minimal sensing for autonomous indoor flight, in European Micro Air Vehicle Conference and Flight Competition (EMAV2007) (2007)Google Scholar
  28. 28.
    P. Oh, M. Joyce, J. Gallagher, Designing an aerial robot for hover-and-stare surveillance, in 12th International Conference on Advanced Robotics, 2005. ICAR’05. Proceedings (IEEE, 2005), pp. 303–308Google Scholar
  29. 29.
    D. Schafroth, S. Bouabdallah, C. Bermes, R. Siegwart, From the test benches to the first prototype of the mufly micro helicopter. J. Intell. Rob. Syst (2008)Google Scholar
  30. 30.
    S. Saripalli, J. Montgomery, G. Sukhatme, Vision-based autonomous landing of an unmanned aerial vehicle, in IEEE International Conference on Robotics and Automation, vol. 3 (2002)Google Scholar
  31. 31.
    L. Frantsevich, Righting kinematics in beetles (insecta: Coleoptera). Arthropod Struct. Dev. 33(3), 221–235 (2004)CrossRefGoogle Scholar
  32. 32.
    A. Klaptocz, G. Boutinard-Rouelle, A. Briod, J.-C. Zufferey, D. Floreano, An indoor flying platform with collision robustness and self-recovery, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2010), pp. 3349–3354Google Scholar
  33. 33.
    J. Roberts, J. Zufferey, D. Floreano, Energy management for indoor hovering robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2008) (2008), pp. 1242–1247Google Scholar
  34. 34.
    M.L. Anderson, C.J. Perry, B.M. Hua, D.S. Olsen, J.R. Parcus, K.M. Pederson, D.D. Jensen, The sticky-pad plane and other innovative concepts for perching uavs, in Proceedings of the 47th AIAA Aerospace Sciences Meeting (2009)Google Scholar
  35. 35.
    R. Cory, R. Tedrake, Experiments in fixed-wing uav perching, in AIAA Conference on Guidance, Navigation, and Control (2008)Google Scholar
  36. 36.
    A. Lussier-Desbiens, M. Cutkosky, Landing and perching on vertical surfaces with microspines for small unmanned air vehicles. J. Intell. Rob. Syst. 57(1), 313–327 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Kovac, J. Germann, C. Hurzeler, R. Siegwart, D. Floreano, A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron (2010)Google Scholar
  38. 38.
    D. Santos, B. Heyneman, S. Kim, N. Esparza, M.R. Cutkosky, Gecko-inspired climbing behaviors on vertical and overhanging surfaces, in IEEE International Conference on Robotics and Automation, 2008, pp. 1125–1131Google Scholar
  39. 39.
    M. Kovac, M. Schlegel, J.-C. Zufferey, D. Floreano, Steerable miniature jumping robot. Auton. Rob. 28(3), 295–306 (2010)Google Scholar
  40. 40.
    T.J. Roberts, R.L. Marsh, Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. J. Exp. Biol. 206(15), 2567–2580 (2003)CrossRefGoogle Scholar
  41. 41.
    R. M. Alexander, Elastic Mechanisms in Animal Movement (Cambridge University Press, 1988)Google Scholar
  42. 42.
    M. Burrows, Biomechanics: Froghopper insects leap to new heights. Nature 424(6948), 509 (2003)CrossRefGoogle Scholar
  43. 43.
    U. Scarfogliero, C. Stefanini, P. Dario, Design and development of the long-jumping “grillo” mini robot, in IEEE International Conference on Robotics and Automation (2007), pp. 467–472Google Scholar
  44. 44.
    M. Kovac, M. Fuchs, A. Guignard, J. Zufferey, D. Floreano, A miniature 7 g jumping robot, in IEEE International Conference on Robotics and Automation (ICRA2008) (2008), pp. 373–378Google Scholar
  45. 45.
    A. Yamada, M. Watari, H. Mochiyama, H. Fujimoto, A robotic catapult based on the closed elastica with a high stiffness endpoint and its application to swimming tasks, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2008), pp. 1477–1482Google Scholar
  46. 46.
    P. Zhang, Q. Zhou, Voice coil based hopping mechanism for microrobot, in IEEE international conference on Robotics and Automation (2009), pp. 1783–1788Google Scholar
  47. 47.
    Y. Sugiyama, M. Yamanaka, S. Hirai, Circular/spherical robots for crawling and jumping, in IEEE International Conference on Robotics and Automation (2005), pp. 3595–3600Google Scholar
  48. 48.
    S. Dubowsky, S. Kesner, J.S. Plante, P. Boston, Hopping mobility concept for search and rescue robots. Ind. Rob. Int. J. 35(3), 238–245 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Zhao, R. Yang, N. Xi, B. Gao, X. Fan, M. W. Mutka, L. Xiao, Development of a miniature self-stabilization jumping robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), pp. 2217–2222Google Scholar
  50. 50.
    M. Kovac, M. Schlegel, J.-C. Zufferey, D. Floreano, A miniature jumping robot with selfrecovery capabilities, in IEEE/RSJ International Conference on Robotics and Automation (2009), pp. 583–588Google Scholar
  51. 51.
    R. Armour, K. Paskins, A. Bowyer, J.F.V. Vincent, W. Megill, Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiratoin Biomimetics J. 2, 65–82 (2007)CrossRefGoogle Scholar
  52. 52.
    S.A. Stoeter, P.E. Rybski, N. Papanikolopoulos, Autonomous stair-hopping with scout robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (2002), pp. 721–726Google Scholar
  53. 53.
    J.M. Morrey, B. Lambrecht, D. Horchler, R.E. Ritzmann, R.D. Quinn, Highly mobile and robust small quadruped robots, in International Conference on Intelligent Robots and Systems, vol. 1 (2003), pp. 82–87Google Scholar
  54. 54.
    M. Kovac, W. Hraiz, O. Fauria, J.-C. Zufferey, D. Floreano, The EPFL jumpglider: a hybrid jumping and gliding robot. Review (2011)Google Scholar
  55. 55.
    M. Kovac, J. Zufferey, D. Floreano, Towards a Self-deploying and Gliding Robot (Springer, 2009)Google Scholar
  56. 56.
    M. Kovac, J.-C. Zufferey, D. Floreano, Hybrid jumping and gliding locomotion for miniature robotics. Review (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Dario Floreano
    • 1
    Email author
  • Jean-Christophe Zufferey
    • 1
  • Adam Klaptocz
    • 1
  • Jürg Germann
    • 1
  • Mirko Kovac
    • 2
  1. 1.Laboratory of Intelligent SystemsEPFL LausanneLausanneSwitzerland
  2. 2.Wyss InstituteHarvard UniversityCambridgeUSA

Personalised recommendations