Advertisement

A Homomorphic LWE Based E-voting Scheme

  • Ilaria Chillotti
  • Nicolas Gama
  • Mariya Georgieva
  • Malika Izabachène
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9606)

Abstract

In this paper we present a new post-quantum electronic-voting protocol. Our construction is based on LWE fully homomorphic encryption and the protocol is inspired by existing e-voting schemes, in particular Helios. The strengths of our scheme are its simplicity and transparency, since it relies on public homomorphic operations. Furthermore, the use of lattice-based primitives greatly simplifies the proofs of correctness, privacy and verifiability, as no zero-knowledge proof are needed to prove the validity of individual ballots or the correctness of the final election result. The security of our scheme is based on classical SIS/LWE assumptions, which are asymptotically as hard as worst-case lattice problems and relies on the random oracle heuristic. We also propose a new procedure to distribute the decryption task, where each trustee provides an independent proof of correct decryption in the form of a publicly verifiable ciphertext trapdoor. In particular, our protocol requires only two trustees, unlike classical proposals using threshold decryption via Shamir’s secret sharing.

Keywords

E-vote Post quantum Fully homomorphic encryption Lattice based protocol LWE 

Notes

Acknowledgments

This work has been supported in part Fonds Unique Interministériel (FUI)through the CRYPTOCOMP project and the EIT Digital project HC@WORKS.

References

  1. 1.
    Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. In: Proceedings of the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)Google Scholar
  2. 2.
    Adida, B., de Marneffe, O., Pereira, O.: Helios voting system. http://www.heliosvoting.org
  3. 3.
    Ajtai, M.: The shortest vector problem in \(L_2\) is NP-hard for randomized reductions. In: Proceedings of 30th STOC. ACM (1998). ECCC as TR97-047Google Scholar
  4. 4.
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive analysis of game-based ballot privacy definitions. In: Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P 2015), San Jose, CA, USA, May 2015. IEEE Computer Society PressGoogle Scholar
  6. 6.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the 45th STOC, pp. 575–584. ACM (2013)Google Scholar
  7. 7.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)Google Scholar
  9. 9.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios under weaker trust assumptions. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 327–344. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy. In: CSF, pp. 297–311. IEEE Computer Society (2011)Google Scholar
  12. 12.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015)Google Scholar
  14. 14.
    Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: generalized worst-case to average-case reductions. IACR Cryptology ePrint Archive 2014, p. 48 (2014)Google Scholar
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)Google Scholar
  16. 16.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  24. 24.
    Smyth, B.: Replay attacks that violate ballot secrecy in Helios (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ilaria Chillotti
    • 1
  • Nicolas Gama
    • 1
    • 2
  • Mariya Georgieva
    • 3
  • Malika Izabachène
    • 4
  1. 1.Laboratoire de Mathématiques de VersaillesUVSQ, CNRS, Université Paris-SaclayVersaillesFrance
  2. 2.InpherLausanneSwitzerland
  3. 3.GemaltoMeudonFrance
  4. 4.CEA LISTGif-sur-Yvette CedexFrance

Personalised recommendations