Advertisement

Additively Homomorphic Ring-LWE Masking

  • Oscar Reparaz
  • Ruan de Clercq
  • Sujoy Sinha Roy
  • Frederik Vercauteren
  • Ingrid Verbauwhede
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9606)

Abstract

In this paper, we present a new masking scheme for ring-LWE decryption. Our scheme exploits the additively-homomorphic property of the existing ring-LWE encryption schemes and computes an additive-mask as an encryption of a random message. Our solution differs in several aspects from the recent masked ring-LWE implementation by Reparaz et al. presented at CHES 2015; most notably we do not require a masked decoder but work with a conventional, unmasked decoder. As such, we can secure a ring-LWE implementation using additive masking with minimal changes. Our masking scheme is also very generic in the sense that it can be applied to other additively-homomorphic encryption schemes.

Keywords

Encryption Scheme Elliptic Curve Cryptography Differential Power Analysis Decryption Operation Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [APS13]
    Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient FPGA implementations of lattice-based cryptography. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 81–86 (2013)Google Scholar
  2. [BCO04]
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. [BLLN13]
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme, Cryptology ePrint Archive, Report 2013/075 (2013). http://eprint.iacr.org/
  4. [BSJ15]
    Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards. ACM Trans. Embed. Comput. Syst. 14(3), 42 (2015)CrossRefGoogle Scholar
  5. [CJRR99]
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. [dCRVV15]
    de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software implementation of ring-lwe encryption. In: Nebel, W., Atienza, D. (ed.) Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 9–13 March 2015, pp. 339–344. ACM (2015)Google Scholar
  7. [FV12]
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption, Cryptology ePrint Archive, Report 2012/144 (2012). http://www.eprint.iacr.org/
  8. [GFS+12]
    Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of hardware building blocks for modern lattice-based encryption schemes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. [GOPS13]
    Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 67–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. [GP99]
    Goubin, L., Patarin, J.: DES and differential power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [GT02]
    Golic, J.D., Tymen, T.: Multiplicative masking and power analysis of AES, cryptographic hardware and embedded systems - CHES 2002. In: Kaliski Jr, Burton S., Koç, Çetin Kaya, Paar, Christof (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [KJJ99]
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [Koc96]
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  14. [LPR10]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. [LSR+15]
    Liu, Z., Seo, H., Roy, S.S. Großschädl, J., Kim, H., Verbauwhede, I.: Efficient ring-lwe encryption on 8-bit avr processors, Cryptology ePrint Archive, Report 2015/410 (2015). http://eprint.iacr.org/
  16. [nsa15]
    Cryptography today, Last Modified on 19, Aug 2015. https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
  17. [PDG14]
    Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014)Google Scholar
  18. [PG14]
    Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryption on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 68–86. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. [POG15]
    Pöppelmann, T., Oder, T., Güneys, T.: High-performance ideal lattice-based cryptography on 8-bit atxmega microcontrollers, Cryptology ePrint Archive, Report 2015/382 (2015). http://eprint.iacr.org/
  20. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, New York, NY, USA, STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  21. [RRVV15]
    Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 683–702. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. [RVM+14]
    Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014)Google Scholar
  23. [RVV14]
    Roy, S.S., Vercauteren, F., Verbauwhede, I.: High precision discrete gaussian sampling on FPGAs. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 383–401. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. [Sho99]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review. 41, 303–332 (1999)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oscar Reparaz
    • 1
  • Ruan de Clercq
    • 1
  • Sujoy Sinha Roy
    • 1
  • Frederik Vercauteren
    • 1
  • Ingrid Verbauwhede
    • 1
  1. 1.COSIC/KU Leuven and iMindsLeuvenBelgium

Personalised recommendations