International Workshop on Post-Quantum Cryptography

Post-Quantum Cryptography pp 1-17 | Cite as

IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9606)

Abstract

QC-MDPC McEliece attracted significant attention as promising alternative public-key encryption scheme believed to be resistant against quantum computing attacks. Compared to binary Goppa codes, it achieves practical key sizes and was shown to perform well on constrained platforms such as embedded microcontrollers and FPGAs.

However, so far none of the published QC-MDPC McEliece/Niederreiter implementations provide indistinguishability under chosen plaintext or chosen ciphertext attacks. Common ways for the McEliece and Niederreiter encryption schemes to achieve IND-CPA/IND-CCA security are surrounding constructions that convert them into secured schemes. In this work we take a slightly different approach presenting (1) an efficient implementation of QC-MDPC Niederreiter for ARM Cortex-M4 microcontrollers and (2) the first implementation of Persichetti’s IND-CCA hybrid encryption scheme from PQCrypto’13 instantiated with QC-MDPC Niederreiter for key encapsulation and AES-CBC/AES-CMAC for data encapsulation. Both implementations achieve practical performance for embedded microcontrollers, at 80-bit security hybrid encryption takes 16.5 ms, decryption 111 ms and key-generation 386.4 ms.

Keywords

Post-quantum cryptography Code-based public key encryption Hybrid encryption Software Microcontroller 

Notes

Acknowledgments

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 645622 (PQCRYPTO). The authors would like to thank Rafael Misoczki for helpful feedback and comments when starting this project.

References

  1. 1.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, 19–22 October 1997, Miami Beach, Florida, USA, pp. 394–403. IEEE Computer Society (1997)Google Scholar
  2. 2.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)CrossRefMATHGoogle Scholar
  3. 3.
    Biasi, F., Barreto, P., Misoczki, R., Ruggiero, W.: Scaling efficient code-based cryptosystems for embedded platforms. J. Crypt. Eng. 4, 1–12 (2014)CrossRefGoogle Scholar
  4. 4.
    Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for embedded devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 49–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theor. 8(1), 21–28 (1962)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Heyse, S.: Implementation of McEliece based on quasi-dyadic Goppa codes for embedded devices. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 143–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  11. 11.
    Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems-Conversions for McEliece. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC McEliece encryption on reconfigurable devices. In: DATE, pp. 1–6. IEEE (2014)Google Scholar
  13. 13.
    von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    von Maurich, I., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece encryption. ACM Trans. Embedded Comput. Syst. 14(3), 1–27 (2015)CrossRefGoogle Scholar
  15. 15.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)Google Scholar
  16. 16.
    Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: ISIT, pp. 2069–2073. IEEE (2013)Google Scholar
  17. 17.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor./Problemy Upravlen. Teor Inform. 15(2), 159–166 (1986)MathSciNetMATHGoogle Scholar
  18. 18.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Perlner, R.: Optimizing information set decoding algorithms to attack cyclosymmetric MDPC codes. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 220–228. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    STMicroelectronics: STM32F417VG High-performance foundation line, ARM Cortex-M4 core with DSP and FPU, 1 Mbyte Flash, 168 MHz CPU, ART Accelerator, Ethernet, FSMC, HW crypto - STMicroelectronics (2015). http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252139
  23. 23.
    Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130–501 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ingo von Maurich
    • 1
  • Lukas Heberle
    • 1
  • Tim Güneysu
    • 2
    • 3
  1. 1.Horst Görtz Institute for IT-SecurityRuhr University BochumBochumGermany
  2. 2.University of BremenBremenGermany
  3. 3.DFKIBremenGermany

Personalised recommendations