Detection and Recognition of Compound 3D Models by Hypothesis Generation

  • Artur WilkowskiEmail author
  • Maciej Stefańczyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 440)


In the paper there is proposed an integrated object detection and recognition system, based on object description given in semantic form [5]. The objects are described in a generic way in terms of parts and relations between them. The Bayesian inference system is utilized, so each object detection and recognition score has probabilistic interpretation. There are designed basic 3D models founded on the inference framework. Object instances are then detected and recognized in real-world Kinect RGBD images.


3-D objects recognition Point cloud RGBD image analysis Constraint satisfaction 



The authors gratefully acknowledge the support of the National Centre for Research and Development (Poland), grant no. PBS1/A3/8/2012.


  1. 1.
    Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A global hypotheses verification method for 3d object recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision—ECCV 2012, Lecture Notes in Computer Science, vol. 7574, pp. 511–524. Springer, Berlin (2012).
  2. 2.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981).
  4. 4.
    Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Computer Vision-ACCV 2012, pp. 548–562. Springer (2013)Google Scholar
  5. 5.
    Kasprzak, W., Pietruch, R., Bojar, K., Wilkowski, A., Kornuta, T.: Integrating data- and model-driven analysis of rgb-d images. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Intelligent Systems’2014, Advances in Intelligent Systems and Computing, vol. 323, pp. 605–616. Springer International Publishing (2015)Google Scholar
  6. 6.
    Lowe, D.G.: Three-dimensional object recognition from single two-dimensional images. Artif. Intell. 31(3), 355–395 (1987)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  8. 8.
    Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416–431 (2006)CrossRefGoogle Scholar
  9. 9.
    Richtsfeld, A., Mörwald, T., Prankl, J., Zillich, M., Vincze, M.: Learning of perceptual grouping for object segmentation on rgb-d data. J. Vis. Comun. Image Represent. 25(1), 64–73 (2014).
  10. 10.
    Stefańczyk, M., Laszkowski, M., Kornuta, T.: WUT visual perception dataset: a dataset for registration and recognition of objects. In: Progress in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing (AISC). Springer (2016)Google Scholar
  11. 11.
    Stefańczyk, M., Pietruch, R.: Hypothesis generation in generic, model-based object recognition system. In: Proceedings of the International Conference Automation 2016 (2016) (submitted)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Industrial Research Institute for Automation and MeasurementsWarsawPoland
  2. 2.Institute of Control and Computation EngineeringWarsawPoland

Personalised recommendations