WUT Visual Perception Dataset: A Dataset for Registration and Recognition of Objects

  • Maciej Stefańczyk
  • Michał Laszkowski
  • Tomasz Kornuta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 440)

Abstract

Modern robots are typically equipped with many sensors with different modalities, e.g. RGB cameras, Time-of-Flight cameras or RGB-D sensors. Thus development of universal, modality-independent algorithms require appropriate datasets and benchmarks. In this paper we present WUT Visual Perception Dataset, consisting of five datasets, captured with different sensors with the goal of development, comparison and evaluation of algorithms for automatic object model registration and object recognition.

Keywords

Dataset Object recognition Object detection Registration  RGB-D Kinect Stereopair RGB Camera 

References

  1. 1.
    Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mosenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: lessons learned with the PR2. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5568–5575. IEEE (2011)Google Scholar
  2. 2.
    Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010)Google Scholar
  3. 3.
    Lenz, I., Knepper, R., Saxena, A.: DeepMPC: Learning deep latent features for model predictive control. In: Proceedings of Robotics: Science and Systems, Rome, Italy (2015)Google Scholar
  4. 4.
    Stefańczyk, M., Kornuta, T.: Acquisition of RGB-D images: methods (in Polish). Pomiary Automatyka Robotyka PAR 18(1), 82–90 (2014)CrossRefGoogle Scholar
  5. 5.
    Kornuta, T., Stefańczyk, M.: Acquisition of RGB-D images: sensors (in Polish). Pomiary Automatyka Robotyka PAR 18(2), 92–99 (2014)CrossRefGoogle Scholar
  6. 6.
    Ren, X., Fox, D., Konolige, K.: Change their perception: RGB-D for 3-D modeling and recognition. Rob. Autom. Mag. IEEE 20(4), 49–59 (2013)CrossRefGoogle Scholar
  7. 7.
    Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)CrossRefGoogle Scholar
  8. 8.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 1–42 (2014)Google Scholar
  9. 9.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  11. 11.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)Google Scholar
  12. 12.
    Richtsfeld, A., Mörwald, T., Prankl, J., Balzer, J., Zillich, M., Vincze, M.: Towards scene understanding–object segmentation using RGBD-images. In: Computer Vision Winter Workshop (2012)Google Scholar
  13. 13.
    Thrun, S., Leonard, J.J.: Simultaneous Localization and Mapping. In: The Handbook of Robotics, pp. 871–890. Springer (2008)Google Scholar
  14. 14.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012)Google Scholar
  15. 15.
    Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531. IEEE (2014)Google Scholar
  16. 16.
    Figat, J., Kornuta, T., Kasprzak, W.: Performance evaluation of binary descriptors of local features. In: Chmielewski, L., Kozera, R., Shin, B.S., Wojciechowski, K. (eds.) Proceedings of the International Conference on Computer Vision and Graphics, vol. 8671 of Lecture Notes in Computer Science, pp. 187–194. Springer, Berlin (2014)Google Scholar
  17. 17.
    Kornuta, T., Stefańczyk, M., Kasprzak, W.: Basic 3D solid recognition in RGB-D images. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, vol. 267 of Advances in Intelligent Systems and Computing (AISC), pp. 421–430. Springer (2014)Google Scholar
  18. 18.
    Wilkowski, A., Kornuta, T., Stefańczyk, M., Kasprzak, W.: Efficient generation of 3D surfel maps using RGB-D sensors. Int. J. Appl. Math. Comput. Sci. (AMCS) (2015) (accepted)Google Scholar
  19. 19.
    Konolige, K.: Projected texture stereo. In: International Conference on Robotics and Automation (ICRA), pp. 148–155. IEEE (2010)Google Scholar
  20. 20.
    Stefańczyk, M., Pietruch, R.: Hypothesis generation in generic, model-based object recognition system. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing (AISC). Springer (2016) (Under review)Google Scholar
  21. 21.
    Kornuta, T., Laszkowski, M.: Perception subsystem for object recognition and pose estimation in RGB-D images. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing (AISC). Springer (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maciej Stefańczyk
    • 1
  • Michał Laszkowski
    • 1
  • Tomasz Kornuta
    • 1
    • 2
  1. 1.Institute of Control and Computation Eng.Warsaw University of TechnologyWarsawPoland
  2. 2.IBM Research, AlmadenSan JoseUSA

Personalised recommendations