Advertisement

Evaluating Map-Based RGB-D SLAM on an Autonomous Walking Robot

  • Dominik Belter
  • Michał Nowicki
  • Piotr Skrzypczyński
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 440)

Abstract

This paper demonstrates an application of a Simultaneous Localization and Mapping algorithm to localize a six-legged robot using data from a compact RGB-D sensor. The algorithm employs a new concept of combining fast Visual Odometry to track the sensor motion, and a map of 3-D point features and robot poses, which is then optimized. The focus of the paper is on evaluating the presented approach on a real walking robot under supervision of a motion registration system that provides ground truth trajectories. We evaluate the accuracy of the estimated robot trajectories applying the well-established methodologies of Relative Pose Error and Absolute Trajectory Error, and investigate the causes of accuracy degradation when the RGB-D camera is carried by a walking robot. Moreover, we demonstrate that the accuracy of robot poses is sufficient for dense environment mapping in 3-D.

Keywords

RGB-D SLAM Factor graph OctoMap Walking robot 

Notes

Acknowledgments

This work was financed by the Polish National Science Centre under decision DEC-2013/09/B/ST7/01583.

References

  1. 1.
    Belter, D., Skrzypczyński, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Ind. Robot: Int. J. 40(3), 229–237 (2013)CrossRefGoogle Scholar
  2. 2.
    Belter, D., Walas, K.: A compact walking robot—flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, AISC 267, pp. 343–352. Springer (2014)Google Scholar
  3. 3.
    Belter, D., Nowicki, M., Skrzypczyński, P.: On the performance of pose-based RGB-D visual navigation systems. In: Cremers, D., et al. (eds.) Computer Vision—ACCV 2014, LNCS 9004, pp. 407–423. Springer (2015)Google Scholar
  4. 4.
    Belter, D., Nowicki, M., Skrzypczyński, P.: Accurate map-based RGB-D SLAM for mobile robots. In: Reis, L., et al. (eds.) Robot 2015: Advances in Robotics, AISC. Springer (2015)Google Scholar
  5. 5.
    Belter, D., Nowicki, M., Skrzypczyński, P., Walas, K., Wietrzykowski, J.: Lightweight RGB-D SLAM system for search and rescue robots. In: Szewczyk, R., et al. (eds.) Progress in Automation, Robotics and Measuring Techniques, AISC 351, pp. 11–21. Springer (2015)Google Scholar
  6. 6.
    Belter, D., Labȩcki, P., Skrzypczyński, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot., Wiley Early View (2015)Google Scholar
  7. 7.
    Claus, D., Fitzgibbon, A.: A rational function lens distortion model for general cameras.In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  8. 8.
    Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)CrossRefGoogle Scholar
  9. 9.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)CrossRefGoogle Scholar
  10. 10.
    Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)CrossRefGoogle Scholar
  11. 11.
    Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation, Shanghai, pp. 3607–3613 (2011)Google Scholar
  12. 12.
    Maier, R., Sturm, J., Cremers, D.: Submap-based bundle adjustment for 3D reconstruction from RGB-D data. In: Pattern Recognition, LNCS 8753, pp. 54–65. Springer (2014)Google Scholar
  13. 13.
    Nowicki, M., Skrzypczyński, P.: Experimental verification of a walking robot self-localization system with the Kinect sensor. J. Autom., Mobile Robot. Intell. Syst. 7(4), 42–51 (2013)CrossRefGoogle Scholar
  14. 14.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)Google Scholar
  15. 15.
    Scherer, S., Zell, A.: Efficient onbard RGBD-SLAM for autonomous MAVs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 1062–1068 (2013)Google Scholar
  16. 16.
    Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: Comparative assessment of point feature detectors and descriptors in the context of robot navigation. J. Autom., Mobile Robot. Intell. Syst. 7(1), 11–20 (2013)Google Scholar
  17. 17.
    Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: The registration system for the evaluation of indoor visual SLAM and odometry algorithms. J. Autom., Mobile Robot. Intell. Syst. 7(2), 46–51 (2013)Google Scholar
  18. 18.
    Schmidt, A., Kasinski, A., Kraft, M., Fularz, M., Domagala, Z.: Calibration of the multi-camera registration system for visual navigation benchmarking. Int. J. Adv. Robot. Syst. 11(83) (2014)Google Scholar
  19. 19.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 593–600 (1994)Google Scholar
  20. 20.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 573–580 (2012)Google Scholar
  21. 21.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)Google Scholar
  22. 22.
    Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 5704–5711 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dominik Belter
    • 1
  • Michał Nowicki
    • 1
  • Piotr Skrzypczyński
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations