Pharmacokinetics and Pharmacodynamics of Ocular Drugs

Chapter

Abstract

This chapter aims to provide the readers a systematic overview of the pharmacokinetics and pharmacodynamics of the drugs intended for ophthalmic use. The concepts of ocular pharmacokinetics and pharmacodynamics are briefly discussed in the introduction. The chapter begins with a discussion on the common anatomical and physiological factors such as blood–ocular and tear fluid–corneal barriers, as well as anterior segment drug loss; and the challenges these factor pose in describing ocular pharmacokinetics and pharmacodynamics. The biopharmaceutics of the ocular drugs describes common pathways of ocular drug absorption. Further, commonly employed routes of administration for ocular drugs are discussed with respect to the choice of the route, properties of the drug, the nature of the ocular disease, the targeted ocular tissue, and the pharmacokinetic behavior of the drugs administered through the route. The pharmacokinetic–pharmacodynamic models that describe the fate of ocular drugs are further reviewed. Finally, recent advances and current trends in understanding of the pharmacokinetics/pharmacodynamics of ocular drugs are discussed based on the reported findings of the scientific and medical community.

Keywords

Ocular pharmacokinetics Ocular pharmacodynamics Biopharmaceutics Ocular routes Compartment models 

References

  1. 1.
    Gilger BC, Gilger B (2013) Challenges in ocular pharmacokinetics, pharmacodynamics, and toxicology. In: Ocular pharmacology and toxicology. Humana Press, New York, pp 1–6CrossRefGoogle Scholar
  2. 2.
    Ammar HO et al (2010) Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm 36(11):1330–1339CrossRefPubMedGoogle Scholar
  3. 3.
    Lee VH-L, Robinson JR (1979) Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci 68(6):673–684CrossRefPubMedGoogle Scholar
  4. 4.
    Patel PB et al (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1(2):113–120CrossRefGoogle Scholar
  5. 5.
    Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456CrossRefPubMedGoogle Scholar
  6. 6.
    Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol 2(1):67–108CrossRefPubMedGoogle Scholar
  7. 7.
    Urtti A et al (1994) Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res 11(9):1278–1282CrossRefPubMedGoogle Scholar
  8. 8.
    Urtti A, Salminen L, Miinalainen O (1985) Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int J Pharm 23(2):147–161CrossRefGoogle Scholar
  9. 9.
    Urtti A et al (1990) Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int J Pharm 61(3):241–249CrossRefGoogle Scholar
  10. 10.
    Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears M (ed) Pharmacology of the eye. Springer, Berlin/Heidelberg, pp 19–116CrossRefGoogle Scholar
  11. 11.
    Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225CrossRefPubMedGoogle Scholar
  12. 12.
    Huang HS, Schoenwald RD, Lach JL (1983) Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci 72(11):1272–1279CrossRefPubMedGoogle Scholar
  13. 13.
    Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135CrossRefPubMedGoogle Scholar
  14. 14.
    HÃmÃlÃinen KM et al (1997) Estimation of pore size and pore density of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Control Release 49(2–3):97–104CrossRefGoogle Scholar
  15. 15.
    Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87(12):1479–1488CrossRefPubMedGoogle Scholar
  16. 16.
    Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52(1):37–48CrossRefPubMedGoogle Scholar
  17. 17.
    Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(6):S3–S9CrossRefPubMedGoogle Scholar
  18. 18.
    Xu HZ, Le YZ (2011) Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci 52(5):2160–2164CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Murata T et al (1996) The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 74(4):819–825PubMedGoogle Scholar
  20. 20.
    Cunha-Vaz J, Faria de Abreu JR, Campos AJ (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59(11):649–656CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yu D (2004) Pharmacokinetics in ocular drug development. In: Bonate PL, Howard DR (eds) Pharmacokinetics in drug development. AAPS Press, Arlington, pp 381–398Google Scholar
  22. 22.
    Gaudana R et al (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216CrossRefPubMedGoogle Scholar
  23. 23.
    Kaur IP, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28(5):473–493CrossRefPubMedGoogle Scholar
  24. 24.
    Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3:193–221CrossRefGoogle Scholar
  25. 25.
    Liaw J, Robinson JR (1993) Ocular penetration enhancers. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 369–381Google Scholar
  26. 26.
    Rawas-Qalaji M, Williams CA (2012) Advances in ocular drug delivery. Curr Eye Res 37(5):345–356CrossRefPubMedGoogle Scholar
  27. 27.
    Sieg JW, Robinson JR (1976) Mechanistic studies on transcorneal permeation of pilocarpine. J Pharm Sci 65(12):1816–1822CrossRefPubMedGoogle Scholar
  28. 28.
    Gomes dos Santos AL et al (2006) Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release 112(3):369–381CrossRefPubMedGoogle Scholar
  29. 29.
    Bashshur ZF et al (2006) Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 142(1):1–9CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou B, Wang B (2006) Pegaptanib for the treatment of age-related macular degeneration. Exp Eye Res 83(3):615–619CrossRefPubMedGoogle Scholar
  31. 31.
    Pitkanen L et al (2005) Permeability of retinal pigment epithelium: effects of permanent molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 46(2):641–646CrossRefPubMedGoogle Scholar
  32. 32.
    Ambati J et al (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41(5):1186–1191PubMedGoogle Scholar
  33. 33.
    Behrens-Baumann W, Ansorg R (1983) Azlocillin concentrations in human aqueous humor after intravenous and subconjunctival administration. Graefes Arch Clin Exp Ophthalmol 220(6):292–293CrossRefPubMedGoogle Scholar
  34. 34.
    Behrens-Baumann W, Ansorg R (1985) Mezlocillin concentrations in human aqueous humour after intravenous and subconjunctival administration. Chemotherapy 31(3):169–172CrossRefPubMedGoogle Scholar
  35. 35.
    Behrens-Baumann W, Martell J (1987) Ciprofloxacin concentrations in human aqueous humor following intravenous administration. Chemotherapy 33(5):328–330CrossRefPubMedGoogle Scholar
  36. 36.
    Behrens-Baumann W, Martell J (1988) Ciprofloxacin concentration in the rabbit aqueous humor and vitreous following intravenous and subconjunctival administration. Infection 16(1):54–57CrossRefPubMedGoogle Scholar
  37. 37.
    Behrens-Baumann W et al (1986) Ciclosporin concentration in the rabbit aqueous humor and cornea following subconjunctival administration. Graefes Arch Clin Exp Ophthalmol 224(4):368–370CrossRefPubMedGoogle Scholar
  38. 38.
    Peeters L et al (2005) Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 46(10):3553–3561CrossRefPubMedGoogle Scholar
  39. 39.
    Pitkanen L et al (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20(4):576–583CrossRefPubMedGoogle Scholar
  40. 40.
    Park J et al (2005) Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release 105(3):279–295CrossRefPubMedGoogle Scholar
  41. 41.
    Haller JA et al (2014) Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology 6420(14):00689-7Google Scholar
  42. 42.
    Inoue M et al (2014) Intravitreal injection of ranibizumab using a pro re nata regimen for age-related macular degeneration and vision-related quality of life. Clin Ophthalmol 8:1711–1716CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ausayakhun S et al (2005) Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai 88(9):S15–S20PubMedGoogle Scholar
  44. 44.
    Ornek N, Ornek K, Erbahceci IE (2014) Corneal and conjunctival sensitivity changes following intravitreal ranibizumab injection in diabetic retinopathy. J Ocul Pharmacol Ther 2014:22Google Scholar
  45. 45.
    Aslan Bayhan S et al (2014) Marginal keratitis after intravitreal injection of ranibizumab. Cornea 2014:12Google Scholar
  46. 46.
    Worakul N, Robinson JR (1997) Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm 44(1):71–83CrossRefGoogle Scholar
  47. 47.
    Ahmed I, Patton TF (1987) Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 38(1–3):9–21CrossRefGoogle Scholar
  48. 48.
    Chien DS et al (1990) Corneal and conjunctival/scleral penetration of p-aminoclonidine, AGN 190342, and clonidine in rabbit eyes. Curr Eye Res 9(11):1051–1059CrossRefPubMedGoogle Scholar
  49. 49.
    Eller MG et al (1985) Topical carbonic anhydrase inhibitors IV: relationship between excised corneal permeability and pharmacokinetic factors. J Pharm Sci 74(5):525–529CrossRefPubMedGoogle Scholar
  50. 50.
    Himmelstein KJ, Guvenir I, Patton TF (1978) Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye. J Pharm Sci 67(5):603–606CrossRefPubMedGoogle Scholar
  51. 51.
    Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5(3):208–220CrossRefPubMedGoogle Scholar
  52. 52.
    Makoid MC, Robinson JR (1979) Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J Pharm Sci 68(4):435–443CrossRefPubMedGoogle Scholar
  53. 53.
    Makoid MC, Sieg JW, Robinson JR (1976) Corneal drug absorption: an illustration of parallel first-order absorption and rapid loss of drug from absorption depot. J Pharm Sci 65(1):150–153CrossRefPubMedGoogle Scholar
  54. 54.
    Miller SC, Himmelstein KJ, Patton TF (1981) A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits. J Pharmacokinet Biopharm 9(6):653–677CrossRefPubMedGoogle Scholar
  55. 55.
    Rao CS et al (1992) Biopharmaceutical evaluation of ibufenac, ibuprofen, and their hydroxyethoxy analogs in the rabbit eye. J Pharmacokinet Biopharm 20(4):357–388CrossRefPubMedGoogle Scholar
  56. 56.
    Sieg JW, Robinson JR (1981) Mechanistic studies on transcorneal permeation of fluorometholone. J Pharm Sci 70(9):1026–1029CrossRefPubMedGoogle Scholar
  57. 57.
    Sakanaka K et al (2008) Ocular pharmacokinetic/pharmacodynamic modeling for timolol in rabbits using a telemetry system. Biol Pharm Bull 31(5):970–975CrossRefPubMedGoogle Scholar
  58. 58.
    Sakanaka K et al (2004) Ocular pharmacokinetic/pharmacodynamic modeling for bunazosin after instillation into rabbits. Pharm Res 21(5):770–776CrossRefPubMedGoogle Scholar
  59. 59.
    Sakanaka K et al (2008) Ocular pharmacokinetic/pharmacodynamic modeling for multiple anti-glaucoma drugs. Biol Pharm Bull 31(8):1590–1595CrossRefPubMedGoogle Scholar
  60. 60.
    Zimmer A et al (1994) Pharmacokinetic and pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharm Res 11(10):1435–1442CrossRefPubMedGoogle Scholar
  61. 61.
    Tang-Liu D et al (1996) Pharmacokinetic and pharmacodynamic correlation of ophthalmic drugs. In: Reddy IK (ed) Ocular therapeutics and drug delivery: a multi-disciplinary approach. Technomic Publishing Co., Inc., LancasterGoogle Scholar
  62. 62.
    Durairaj C, Shen J, Cherukury M (2014) Mechanism – based translational pharmacokinetic – pharmacodynamic model to predict intraocular pressure lowering effect of drugs in patients with glaucoma or ocular hypertension. Pharm Res 31(8):2095–2106CrossRefPubMedGoogle Scholar
  63. 63.
    Luu KT et al (2009) Pharmacokinetic-pharmacodynamic and response sensitization modeling of the intraocular pressure-lowering effect of the EP4 Agonist 5-{3-[(2S)-2-{(3R)-3-hydroxy-4-[3-(trifluoromethyl)phenyl]butyl}-5-oxopyrrolidin- 1-yl]propyl}thiophene-2-carboxylate (PF-04475270). J Pharmacol Exp Ther 331(2):627–635CrossRefPubMedGoogle Scholar
  64. 64.
    Siepmann J et al (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res 16(11):1748–1756CrossRefPubMedGoogle Scholar
  65. 65.
    Zhang Y et al (2014) Pharmacokinetics of ranibizumab after intravitreal administration in patients with retinal vein occlusion or diabetic macular edema. Ophthalmology 6420(14):00432-1Google Scholar
  66. 66.
    Tang-Liu DD, Acheampong A (2005) Ocular pharmacokinetics and safety of ciclosporin, a novel topical treatment for dry eye. Clin Pharmacokinet 44(3):247–261CrossRefPubMedGoogle Scholar
  67. 67.
    Bucolo C, Melilli B, Piazza C, Zurria M, Drago F. (2011). Ocular Pharmacokinetics Profile of Different Indomethacin Topical Formulations. J Ocul Pharmacol Ther, 2011/12/01, 27(6):571–576Google Scholar
  68. 68.
    Yuan J et al (2009) Preparation of 0.05 % FK506 suspension eyedrops and its pharmacokinetics after topical ocular administration. J Ocul Pharmacol Ther 25(4):345–50CrossRefPubMedGoogle Scholar
  69. 69.
    Yuan J et al (2012) Ocular safety and pharmacokinetics study of FK506 suspension eye drops after corneal transplantation. J Ocul Pharmacol Ther 28(2):153–158CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Asena L et al (2013) Ocular pharmacokinetics, safety and efficacy of intracameral moxifloxacin 0.5 % solution in a rabbit model. Curr Eye Res 38(4):472–479CrossRefPubMedGoogle Scholar
  71. 71.
    Lin J et al (2014) Ocular pharmacokinetics of naringenin eye drops following topical administration to rabbits. J Ocul Pharmacol Ther 2014:17Google Scholar
  72. 72.
    Shen J et al (2014) Ocular pharmacokinetics of intravitreally administered brimonidine and dexamethasone in animal models with and without blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci 55(2):1056–1066CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Pharmaceutical SciencesSt. John Fisher College, Wegmans School of PharmacyRochesterUSA
  2. 2.Novartis PharmaceuticalsEast HanoverUSA

Personalised recommendations