Robot Soccer World Cup

RoboCup 2015: Robot World Cup XIX pp 347-355 | Cite as

Polyurethane-Based Modular Series Elastic Upgrade to a Robotics Actuator

  • Leandro Tomé Martins
  • Christopher Tatsch
  • Eduardo Henrique Maciel
  • Renato Ventura Bayan Henriques
  • Reinhard Gerndt
  • Rodrigo Silva da Guerra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9513)

Abstract

This article extends previous work, presenting a novel polyurethane based compliant spring system designed to be attached to a conventional robotics servo motor, turning it into a series elastic actuator (SEA). The new system is composed by only two mechanical parts: a torsional polyurethane spring and a round aluminum support for link attachment. The polyurethane spring, had its design derived from a iterative FEM-based optimization process. We present also some system identification and practical results using a PID controller for robust position holding.

Keywords

Series elastic actuator Passive compliance 

References

  1. 1.
    Ashby, M., Johnson, K.: Materials and Desing: The Art and Science of Material Selection in Product Design. Elsevier Editora Ltda, Rio de Janeiro (2011)Google Scholar
  2. 2.
    Ates, S., Sluiter, V.I., Lammertse, P., Stienen, A.H.A.: Servosea concept: cheap, miniature series-elastic actuators for orthotic, prosthetic and robotic hands. In: Proceedings of 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (2014)Google Scholar
  3. 3.
    Carpino, G., Accoto, D., Sergi, F., Tagliamonte, N.L., Guglielmelli, E.: A novel compact torsional spring for series elastic actuators for assistive wearable robots. J. Mech. Des. 134(121002), 1–10 (2012)Google Scholar
  4. 4.
    Guizzo, E., Ackerman, E.: The rise of the robot worker. IEEE Spectr. 49(10), 34–41 (2012)CrossRefGoogle Scholar
  5. 5.
    Hannemann, A.K., Stiddien, F., Xia, M., Krebs, O., Gerndt, R., Krupop, S., Bolze, T., Lorenz, T.: WF Wolves - Humanoid kid size team description for RoboCup 2014. RoboCup Tournament 2014 (2014). http://www.wf-wolves.de
  6. 6.
    Jain, A., Kemp, C.C.: Pulling open doors and drawers: coordinating an omni-directional base and a compliant arm with equilibrium point control. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1807–1814 (2010)Google Scholar
  7. 7.
    Kushner, D.: The making of arduino. IEEE Spectrum 26 (2011)Google Scholar
  8. 8.
    Laffranchi, M., Sumioka, H., Sproewitz, A., Gan, D., Tsagarakis, N.: Compliant actuators. In: Adaptive Modular Architectures for Rich Motor Skills (2011)Google Scholar
  9. 9.
    Gerndt, R., de Mendonça Pretto, R., da Silva Guerra, R., Martins, L.T.: Design of a modular series elastic upgrade to a robotics actuator. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 701–708. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Wang, W., Loh, R.N.K., Gu, E.Y.: Passive compliance versus active compliance in robot-based automated assembly systems. Industr. Rob. 25(1), 48–57 (1998)CrossRefGoogle Scholar
  11. 11.
    Wyeth, G.: Control issues for velocity sourced series elastic actuators. In: Australasian Conference on Robotics and Automation (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leandro Tomé Martins
    • 1
  • Christopher Tatsch
    • 1
  • Eduardo Henrique Maciel
    • 2
  • Renato Ventura Bayan Henriques
    • 2
  • Reinhard Gerndt
    • 3
  • Rodrigo Silva da Guerra
    • 1
  1. 1.Centro de TecnologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Programa de Pós-Graduação em Engenharia ElétricaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Department of Computer SciencesOstfalia University of Applied SciencesWolfenbüttelGermany

Personalised recommendations