Advertisement

Fuzzy Logic Control of a Humanoid Robot on Unstable Terrain

  • Chris Iverach-Brereton
  • Jacky Baltes
  • Brittany Postnikoff
  • Diana Carrier
  • John Anderson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9513)

Abstract

This paper describes a novel system for enabling a humanoid robot to balance on highly dynamic terrain using fuzzy logic. We evaluate this system by programming Jimmy, a small, humanoid DARwIn-OP robot, to balance on a bongo board – a simple apparatus consisting of a deck resting on a free-rolling wheel – using our novel fuzzy logic system and a PID controller based on our previous work (Baltes et al. [1]). Both control algorithms are tested using two different control policies: “do the shake,” wherein the robot attempts to keep the bongo board’s deck level by CoM manipulation; and “let’s sway,” wherein the robot pumps its legs up and down at regular intervals in an attempt to induce a state of dynamic stability to the system. Our experiments show that fuzzy logic control is equally capable to PID control for controlling a bongo board system.

References

  1. 1.
    Baltes, J., Iverach-Brereton, C., Anderson, J.: Human inspired control of a small humanoid robot in highly dynamic environments or Jimmy Darwin Rocks the bongo board. In: Bianchi, R.A.C., Akin, H., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 466–477. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Baltes, J., Tu, K.Y., Lip, S.L.: HuroCup Competition. FIRA, September 2013Google Scholar
  3. 3.
    Wang, J.J.: Simulation studies of inverted pendulum based on PID controllers. Simul. Model. Pract. Theory 19(1), 440–449 (2011). Modeling and Performance Analysis of Networking and Collaborative SystemsCrossRefGoogle Scholar
  4. 4.
    Harmon, M.E., Harmon, S.S.: Reinforcement Learning: A Tutorial. WL/AAFC, WPAFB Ohio, vol. 45433 (1996)Google Scholar
  5. 5.
    Hehn, M., D’Andrea, R.: A flying inverted pendulum. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 763–770. IEEE (2011)Google Scholar
  6. 6.
    Wang, L.X.: Stable adaptive fuzzy controllers with application to inverted pendulum tracking. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(5), 677–691 (1996)CrossRefGoogle Scholar
  7. 7.
    Yamakawa, T.: Stabilization of an inverted pendulum by a high-speed fuzzy logic controller hardware system. Fuzzy Sets Syst. 32(2), 161–180 (1989)CrossRefGoogle Scholar
  8. 8.
    Anderson, S., Hodgins, J.: Adaptive torque-based control of a humanoid robot on an unstable platform. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 511–517 (2010)Google Scholar
  9. 9.
    McGrath, S., Anderson, J., Baltes, J.: Model-free active balancing for humanoid robots. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS, vol. 5399, pp. 544–555. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Park, J., Haan, J., Park, F.: Convex optimization algorithms for active balancing of humanoid robots. IEEE Trans. Robot. 23(4), 817–822 (2007)CrossRefGoogle Scholar
  11. 11.
    Hyon, S., Cheng, G.: Gravity compensation and full-body balancing for humanoid robots. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 214–221 (2006)Google Scholar
  12. 12.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207 (2006)Google Scholar
  13. 13.
    Baltes, J., Iverach-Brereton, C., Anderson, J.: Sensor filtering for balancing of humanoid robots in highly dynamic environments. In: 2013 CACS International Automatic Control Conference (CACS), pp. 170–173, December 2013Google Scholar
  14. 14.
    Iverach-Brereton, C., Winton, A., Baltes, J.: Ice skating humanoid robot. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 209–219. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Iverach-Brereton, C., Baltes, J., Anderson, J., Winton, A., Carrier, D.: Gait design for an ice skating humanoid robot. Robot. Auton. Syst. 62(3), 306–318 (2012)CrossRefGoogle Scholar
  16. 16.
    Martin, N.: Robot Goes From Hockey Skates to Skis. Winnipeg Free Press, Winnipeg (2015 A2)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Chris Iverach-Brereton
    • 1
  • Jacky Baltes
    • 1
  • Brittany Postnikoff
    • 1
  • Diana Carrier
    • 1
  • John Anderson
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations