Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean)

  • Markes E. Johnson
  • Jorge Ledesma-Vázquez
  • Ricardo S. Ramalho
  • Carlos M. da Silva
  • Ana Cristina Rebelo
  • Ana Santos
  • B. Gudveig Baarli
  • Eduardo Mayoral
  • Mário Cachão
Part of the Coastal Research Library book series (COASTALRL, volume 15)


Distribution of living rhodoliths in the Macaronesian realm is limited by extensive rocky shores and narrow insular shelves that rapidly drop off beyond the 50-m isobath. Wind and wave erosion is most intense on north and northeast-facing shores due to the prevailing northeasterly trade winds over much of the region. Southern shores offer more sheltered, leeward settings. Rhodolith beds tend to thrive on eastern shores with strong long-shore currents and southeastern shores that benefit from wave refraction. Rhodoliths are not entirely absent off northern shores, but may fail to reach maximum size before being washed ashore to make berms and beaches. Islands considered in greater detail in this survey include Santiago, Maio, and Sal from the Cape Verde Islands, Fuerteventura and the related islet of Lobos in the Canary Islands, Selvagem Grande and Pequena from the Savage Islands, Porto Santo in the Madeira Islands, and Santa Maria in the Azores. This contribution expands on the concept that living rhodoliths enter the fossil record through a range of taphofacies defined by the degree of breakage and corrosion and further characterized by sedimentological criteria regarding the amount of matrix and packing among bioclasts. Rhodolith deposits in Macaronesia seldom reflect settings under natural growth conditions. Rather, rhodoliths are subject to transportation and post-mortem disintegration resulting in the accumulation of rhodolith materials captured by subtidal storm deposits, tidal pools and platform over-wash deposits, as well as beachrock, beach, berm, hurricane, tsunami, and coastal dune deposits. Some of this material is transferred farther offshore, but exposed island strata show a tendency for shoreward migration of taphofacies. Rhodolith beds provide a habitat for some species of marine invertebrates, including epifaunal and infaunal elements directly associated with whole rhodoliths and these features play a role in rhodolith biostratinomy.


Rhodolith taphonomy Depositional environments Northeast trade winds Macaronesian archipelagos North Atlantic Ocean 



Funding for fieldwork in the Madeira, Canary, and Cape Verde island groups from 2011 to 2013 was provided under grant CGL2010-15372-BTE from the Spanish Ministry of Science and Innovation to project leader Eduardo Mayoral (University of Huelva). E. Mayoral and A. Santos acknowledge the support given by the research group RNM-276. Esther Martín González and Carolina Castillo (La Laguna University, Canary Islands) are thanked for their help and expert guidance on Fuerteventura during the 2011 field season of research. We are grateful to the rangers at the nature preserve in the Savage Islands for providing beach and dune samples from the landing place on the southwest side of Selvagem Pequena. Thanks also go to Mónica Albuquerque at EMEPC for her assistance in providing dredge data from the Selvagems. We are grateful to Julio Aguirre Rodriguez (University of Granada) for engaging us in stimulating discussions that helped to clarify outlooks on taphonomy and to an anonymous reviewer for comments that helped to improve this paper.


  1. Abreu MM, Ribeiro L, Arsénio P, Bulcão L (2002) Dinâmica Geomorfológica como Metodologia Básica na Avaliação da Sensibilidade da Paisagem. Aplicação ao Ilhéu de Vila Franca do Campo, S. Miguel, Açores, 49–58. In: Associação Portuguesa de Geomorfólogos (ed) Contribuições para a Dinâmica Geomorfológica, vol 1. Publicações da Associação Portuguesa de Geomorfólogos, Lisboa, pp 1–140Google Scholar
  2. Ávila SP, Amen R, Azevedo JMN, Cachão M, García-Talavera F (2002) Checklist of the Pleistocene marine molluscs of Praínha and Lagoínhas (Santa Maria island, Azores). Açoreana 9(4):343–370Google Scholar
  3. Baarli BG, Santos A, Silva CM, Ledesma-Vázquez J, Mayoral E, Cachão M, Johnson ME (2011) Diverse macroids and rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. J Coast Res 28:296–305Google Scholar
  4. Baarli BG, Santos A, Mayoral EJ, Ledesma-Vázquez J, Johnson ME, da Silva CM, Cachão M (2013) What Darwin did not see: pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geol Mag 150:183–189CrossRefGoogle Scholar
  5. Baarli BG, Cachão M, da Silva CM, Johnson ME, Mayoral EJ, Santos A (2014) A middle miocene carbonate embankment on an active volcanic slope: Ilhéu de Baixo, Madeira Archipelago, Eastern Atlantic. Geol J 49:90–106CrossRefGoogle Scholar
  6. Bassi D, Humblet M, Iryu Y (2011) Recent ichnocoenosis in deep water macroids, Ryukyu Islands, Japan. Palaios 26:232–238CrossRefGoogle Scholar
  7. Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2012) Recent macroids on the Kikai-jima shelf, Central Ryukyu Islands, Japan. Sedimentology. doi: 10.1111/j.1365-3091.2012.01333.x Google Scholar
  8. Brand S (ed) (2011) African severe weather port guide from naval research laboratory in Monterey, California. http://www.nrlmry.navy.mil/port_studies/africaports/Mindelo/index.html. Last modified Apr 2011
  9. Brandt DS (1989) Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios 4:303–309CrossRefGoogle Scholar
  10. Brett CE, Baird GC (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207–227CrossRefGoogle Scholar
  11. Brooke B (2001) The distribution of carbonate eolianite. Earth-Sci Rev 55:135–164CrossRefGoogle Scholar
  12. Chamberlain YM, Irvine LM, Walker RI (1988) A redescription of Lithophyllum crouanii (Rhodophyta, Corallinales) in the British Isles with an assessment of its relationship to L. orbiculatus. Br Phycol J 23:177–192CrossRefGoogle Scholar
  13. Checconi A, Monaco P (2008) Trace fossil assemblages in rhodoliths from the Middle Miocene of Mt. Camposauro (Longano Formation, Southern Apennines, Italy). Stud Trent Sci Nat Acta Geol 83:165–176Google Scholar
  14. Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sed Geol 225:50–66CrossRefGoogle Scholar
  15. Darwin C (1839) Journal and remarks, 1832–1836. In: FitzRoy R (ed) Narrative of the surveying voyages of his majesty’s ships adventure and beagle between the years 1826 and 1836, Volume 3. Henry Colburn, London, pp 1–615Google Scholar
  16. Darwin C (1844) Geological observations on the volcanic islands visited during the voyage of the H.M.S. Beagle. Smith, Elder & Co, London, pp 1–175Google Scholar
  17. Dias GT, Villaça RC (2012) Coralline algae depositional environments on the Brazilian central southeastern shelf. J Coast Res 28:270–279CrossRefGoogle Scholar
  18. Dott RH Jr, Bourgeois J (1982) Hummocky stratification: significance of its variable bedding sequences. Bull Geol Soc Am 93:663–680CrossRefGoogle Scholar
  19. Dumas S, Arnott RWC (2006) Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073–1076CrossRefGoogle Scholar
  20. Ferreira MP (1985) Evolução geocronológica e paleomagnética das ilhas do arquipélago da Madeira: uma síntese. Mem Not Mus Lab Miner Geol Univ Coimbra 99:213–218Google Scholar
  21. Ferreira MP, Macedo CR, Ferreira JF (1988) K/Ar geochronology in the Selvagens, Porto Santo and Madeira islands (Eastern-Central Atlantic): a 30-m.y. spectrum of submarine and subaerial volcanism. Lunar Planets Inst 19:325–326Google Scholar
  22. Foslie MH (1898) Some new or critical lithothamnia. Konglige norske Videnskapelige Selskap Skrifter 6:1–19Google Scholar
  23. Foster MS (2001) Rhodoliths: between rock and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  24. Geldmacher J, Hoernle K, Bogaard P, Zankl G, Garbe-Schonberg D (2001) Earlier history of the ≥ 70 Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagem Archipelago and neighboring seamounts in the eastern North Atlantic. J Volcanol Geotherm Res 111:55–88CrossRefGoogle Scholar
  25. Gutiérrez M, Casillas R, Fernández C, Balogh K, Ahijado A, Castillo C, Colmenero JR, García-Navarro E (2006) The submarine volcanic succession of the basal complex of Fuerteventura, Canary Islands: a model of submarine growth and emergence of tectonic volcanic islands. Bull Geol Soc Am 118:785–804CrossRefGoogle Scholar
  26. Herbert S (2005) Charles Darwin, geologist. Cornell University Press, Ithaca, pp 1–485Google Scholar
  27. Holbourn A, Kuhnt W, Regenberg M, Schulz M, Mix A, Andersen N (2010) Does Antarctic glaciation force migration of the tropical rain belt? Geology 38:783–786CrossRefGoogle Scholar
  28. Hontoria F, Redón S, Maccari M, Varó I, Navarro JC, Ballell L, Amat F (2012) A revision of Artemia biodiversity in Macaronesia. Aquat Biosyst 8:25–31CrossRefGoogle Scholar
  29. Hutchings PA, Kiene WE, Cunningham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organism (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11:23–31CrossRefGoogle Scholar
  30. Instituto Hidrográfico (2008) Caracterização dos depósitos sedimentares da Plataforma insular sul da Ilha do Porto Santo. Final technical report Project GM 52OP02, Hydrographic Institute Portuguese Navy. p 78Google Scholar
  31. John CM, Mutti M, Adatte T (2003) Mixed carbonate-siliciclastic record on the North African margin (Malta) – coupling of weathering processes and mid Miocene climate. Bull Geol Soc Am 115:217–229CrossRefGoogle Scholar
  32. Johnson RG (1960) Models and methods for the analysis of the mode of formation of fossil assemblages. Geol Soc Am Bull 71:1075–1086CrossRefGoogle Scholar
  33. Johnson ME, da Silva CM, Santos A, Baarli BG, Cachão M, Mayoral E, Rebelo AC, Ledesma-Vázquez J (2011) Rhodolith transport and immobilization on a volcanically active rocky shore: middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 300:113–127CrossRefGoogle Scholar
  34. Johnson ME, Baarli BG, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral E, Ramalho R, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeog Palaeoclim Palaeoecol 329–330:83–100CrossRefGoogle Scholar
  35. Johnson ME, Baarli BG, da Silva CM, Cachão M, Ramalho R, Ledesma-Vázquez J, Mayoral E, Santos A (2013) Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago. Aeolian Res 8:1–9CrossRefGoogle Scholar
  36. Johnson ME, Ramalho RS, Baarli BG, Cachão M, da Silva CM, Mayoral EJ, Santos A (2014) Miocene-Pliocene rocky shores on São Nicolau (Cape Verde Islands): contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeogr Palaeoclimatol Palaeoecol 395:131–143CrossRefGoogle Scholar
  37. Ledesma-Vázquez J, Johnson ME, Backus DH, Mirabal-Dávila C (2007) Coastal evolution from transgressive barrier deposit to marine terrace on Isla Coronados, Baja Califonria Sur, Mexico. Cien Mar 33:335–351Google Scholar
  38. Mata J, Fonseca PE, Prada S, Rodrigues D, Martins D, Ramalho R, Madeira J, Cachão M, Silva CM, Matias MJ (2013) O Arquipélago da Madeira. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol. II. Geologia Meso-cenozóica, Escolar Editora, pp 691–746Google Scholar
  39. Morri C, Bianchi CN (1996) Ecological niches of hermatypic corals at Ilha do Sal (Arquipélago de Cabo Verde). Bol Mus Munic Funchal 4:473–485Google Scholar
  40. Nebelsick JH, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. In: Insalaco E, Skelton P, Palmer T (eds) Carbonate platform systems: components and interactions. Geol Soc London Spec Pubs 178:89–107Google Scholar
  41. Paris R, Giachetti T, Chevalier J, Guillou H, Frank N (2011) Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo volcano. Sediment Geol 239:129–145CrossRefGoogle Scholar
  42. Penrose DL (1996) Genus Neogoniolithon. In: The marine benthic flora of southern Ausgtralia. Rhodophyta. Part IIIB, Cracilariales, Rhododymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study, Canberra: 280–283Google Scholar
  43. Puga-Bernabéu A, Martín JM, Braga JC (2007) Tsunami-related deposits in temperate carbonate ramps, Sorbas Basin, southern Spain. Sediment Geol 199:107–127CrossRefGoogle Scholar
  44. Quartau R, Trenhaile AS, Mitchell NC, Tempera F (2010) Development of volcanic insular shelves: insights from observations and modelling of Faial Island in the Azores Archipelago. Mar Geol 275:66–83CrossRefGoogle Scholar
  45. Ramalho R, Quartau R, Trenhaile AS, Mitchell NC, Woodroffe CD, Ávila SP (2013) Coastal evolution on oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Sci Rev 127:140–170CrossRefGoogle Scholar
  46. Ravelo AC, Andreasen DH, Lyle M, Olivarez-Lyle A, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267CrossRefGoogle Scholar
  47. Rebelo AC, Rasser MW, Riosmena-Rodríguez R, Neto AI, Ávila SP (2014) Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation. Phytotaxa 190:370–382CrossRefGoogle Scholar
  48. Rosas-Alquicira EF, Riosmena-Rodríguez R, Couto RP, Neto AI (2009) New additions to the Azorean algal flora, with ecological observations on rhodolith formations. Cah Biol 50:143–151Google Scholar
  49. Rusu L, Soares CG (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196CrossRefGoogle Scholar
  50. Santos A, Mayoral E, Johnson ME, Baarli BG, Silva CM, Cachão M, Ledesma-Vázquez J (2012) Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene shoreline (Porto Santo, Madeira Archipelago, Portugal). Facies 58:573–585CrossRefGoogle Scholar
  51. Serralheiro A (1970) Geologia da Ilha de Maio. Junta de Investigações do Ultramar, Lisbon, pp 1–103Google Scholar
  52. Setchell WA, Mason LR (1943) Goniolithon and Neogoniolithon two genera of crustaceous coralline algae. Proc Natl Acad Sci 29(3–4):87–92CrossRefGoogle Scholar
  53. Soares AF (1973) A formação eolianítica da ilha de Porto Santo. Memórias e Notícias, Publ. Museu Lab Min. Geológico Univ. Coimbra Cent. Estud Geol 75:47–88Google Scholar
  54. Steiner C, Hobson A, Favre P, Stampfli GM, Hernandez J (1998) Mesozoic sequence of Fuerteventura (Canary Islands): witness of early jurassic sea-floor spreading in the central Atlantic. Bull Geol Soc Am 110:1304–1317CrossRefGoogle Scholar
  55. Steller DL, Riosmena-Rodríguez R, Foster MS (2009) Libing rhodolith bed ecosystems in the Gulf of California. In: Johnson ME, Ledesma-Vázquez J (eds) Atlas of coastal ecosystems in the Western Gulf of California. University of Arizona Press, Tucson, pp 73–82Google Scholar
  56. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrates communities. Earth Sci Rev 62:1–103CrossRefGoogle Scholar
  57. Tores PC, Silva LC, Serralheiro A, Tassinari C, Munhá J (2002) Enquadramento geocronológico pelo metodo K/Ar das principais sequências volcano-estratigráficas da Ilha do Sal – Cabo Verde, vol 18. Garcia de Orta, Serie Geologia, Lisboa, pp 9–13Google Scholar
  58. Van Der Land J (1993) Marine biota of the Cape Verde Islands. Cour Forsch Inst Senckenb 159:39–44Google Scholar
  59. Williams H, Delinger E (2013) Contributions of Hurricane Ike storm surge sedimentation to long-term aggradation of southeastern Texas coastal marshes. J Coast Res 65:838–843, Sp IssueCrossRefGoogle Scholar
  60. Zazo C, Goy JL, Hillaire-Marcel C, Gillot PY, Soler V, González JH, Dabrio CJ, Ghaleb B (2002) Raised marine sequences of Lanzarote and Fuerteventura revisited – a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the quaternary. Quat Sci Rev 21:2019–2046CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Markes E. Johnson
    • 1
  • Jorge Ledesma-Vázquez
    • 2
  • Ricardo S. Ramalho
    • 3
    • 4
  • Carlos M. da Silva
    • 5
  • Ana Cristina Rebelo
    • 6
    • 7
  • Ana Santos
    • 8
  • B. Gudveig Baarli
    • 1
  • Eduardo Mayoral
    • 8
  • Mário Cachão
    • 5
  1. 1.Department of GeosciencesWilliams CollegeWilliamstownUSA
  2. 2.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  3. 3.School of Earth SciencesUniversity of BristolBristolUK
  4. 4.Lamont-Doherty Earth Observatory at Columbia UniversityPalisadesUSA
  5. 5.Departamento de Geologia e Centro de GeologiaFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  6. 6.Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
  7. 7.Staatliches Museum für NaturkundeStuttgartGermany
  8. 8.Departamento de Geodinámica y Paleontología, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations