Genetics of Antarctic Krill

  • Simon N. JarmanEmail author
  • Bruce E. Deagle
Part of the Advances in Polar Ecology book series (AVPE)


From a genetic perspective, Euphausia superba (krill) can be described as a non-model organism with a large genome and a large population size. The population genetics of krill has been studied extensively and a consensus on population structure is now emerging. Some preliminary characterization of the krill genome has been accomplished, but the genome is too large to sequence with current technologies. The major genetic resources currently available for krill are transcriptome assemblies and DNA sequences for specific regions. Genetic technologies have advanced rapidly in the past decade and a range of new genetic approaches for studying krill population genetics, physiology, gene function and ecology are now available. Several krill gene expression studies in recent years have revealed genes involved in a range of physiological processes and highlight the potential of this approach for answering a range of questions in krill biology. The rapid expansion in genetic methods available for studying non-model organisms like krill means many new questions can be addressed with these approaches. This is an exciting time for geneticists and krill biologists considering these questions.


Gene Genome Phylogeny Panmixia Expression 



We thank Andrea Polanowski, Cassandra Faux, Léonie Suter, Mathias Teschke, Volker Siegel and Lorenzo Zane for their helpful comments. The authors were funded by Australian Antarctic Science project 4015.


  1. Anheller J-E, Hellgren L, Karlstam B, Vincent J (1989) Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch Dermatol Res 281(2):105–110CrossRefGoogle Scholar
  2. Ayala F, Valentine JW, Zumwalt G (1975) An electrophoretic study of the Antarctic zooplankter Euphausia superba. Limnol Oceanogr 20(4):635–640CrossRefGoogle Scholar
  3. Ban S, Ohi N, Leong S, Takahashi K, Riser C, Taguchi S (2007) Effect of solar ultraviolet radiation on survival of krill larvae and copepods in Antarctic Ocean. Polar Biol 30(10):1295–1302CrossRefGoogle Scholar
  4. Batta-Lona PG, Bucklin A, Wiebe PH, Patarnello T, Copley NJ (2011) Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs). Deep Sea Res Part II 58(13–16):1652–1661CrossRefGoogle Scholar
  5. Benjamin DC, Kristjánsdóttir S, Gudmundsdottir A (2001) Increasing the thermal stability of euphauserase. Eur J Biochem 268(1):127–131CrossRefGoogle Scholar
  6. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27(4):233–243CrossRefGoogle Scholar
  7. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29(6):358–367CrossRefGoogle Scholar
  8. Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T (2011) Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 12:32CrossRefGoogle Scholar
  9. Buckley LJ (1984) RNA-DNA ratio: an index of larval fish growth in the sea. Mar Biol 80(3):291–298CrossRefGoogle Scholar
  10. Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, Färber-Lorda J, Pierson JJ (2007) MtCOI sequences for euphausiids (Euphausiacea, Crustacea): DNA barcodes for species identification. J Plankton Res 29(6):483–493CrossRefGoogle Scholar
  11. Candeias R, Teixeira S, Duarte CM, Pearson GA (2014) Characterization of polymorphic microsatellite loci in the Antarctic krill Euphausia superba. BMC Res Notes 7(1):73CrossRefGoogle Scholar
  12. Casanova B (1984) Phylogénie des euphausiacés (Crustacés eucarides). Bull Mus Natl Hist Nat Sect A Zool Biol Écol Anim 6(4):1077–1089Google Scholar
  13. Cascella K, Jollivet D, Papot C, Léger N, Corre E, Ravaux J, Clark MS, Toullec J-Y (2015) Diversification, evolution and sub-functionalization of 70 kDa heat shock proteins in two sister species of Antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS ONE 10(4):e0121642CrossRefGoogle Scholar
  14. Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10(3):195–205CrossRefGoogle Scholar
  15. Chen CS, Yan TR, Chen HY (1978) Purification and properties of trypsin-like enzymes and a carboxypeptidase A from Euphausia superba. J Food Biochem 2(4):349–366CrossRefGoogle Scholar
  16. Chen B, Chu T, Harms E, Gergen JP, Strickland S (1998) Mapping of Drosophila mutations using site-specific male recombination. Genetics 149(1):157–163Google Scholar
  17. Clark MS, Thorne MAS, Toullec J-Y, Meng Y, Guan LL, Peck LS, Moore S (2011) Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS ONE 6(1):e15919CrossRefGoogle Scholar
  18. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefGoogle Scholar
  19. De Pitta C, Bertolucci C, Mazzotta GM, Bernante F, Rizzo G, De Nardi B, Pallavicini A, Lanfranchi G, Costa R (2008) Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature. BMC Genomics 9:45CrossRefGoogle Scholar
  20. De Pittà C, Biscontin A, Albiero A, Sales G, Millino C, Mazzotta GM, Bertolucci C, Costa R (2013) The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions. PLoS ONE 8(7):e68652CrossRefGoogle Scholar
  21. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett 10(9):20140562CrossRefGoogle Scholar
  22. Deagle BE, Faux C, Kawaguchi S, Meyer B,SNJ (2015) Antarctic krill population genomics: apparent panmixia, but genome complexity and large population size muddies the water. Mol Ecol 24(19):4943–4959CrossRefGoogle Scholar
  23. Denner EBM, Mark B, Mark B, Busse H-J, Busse H-J, Turkiewicz M, Lubitz W (2001) Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting xcreting a cold-adapted metalloprotease. Syst Appl Microbiol 24(1):44–53CrossRefGoogle Scholar
  24. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15CrossRefGoogle Scholar
  25. Everson I (2000) Krill: biology, ecology and fisheries. Blackwell Science, OxfordCrossRefGoogle Scholar
  26. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Massachusetts, pp 123–146Google Scholar
  27. Fevolden SE (1988) Biochemical genetics and population structure of Euphausia superba. Comp Biochem Phys B 90(3):507–513Google Scholar
  28. Fevolden SE, Ayala FJ (1981) Enzyme polymorphism in Antarctic krill (Euphausiacea); genetic variation between populations and species. Sarsia 66(3):167–181CrossRefGoogle Scholar
  29. Fevolden SE, Schneppenheim R (1989) Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol 9(8):533–539CrossRefGoogle Scholar
  30. Gómez-Gutiérrez J, Morales-Ávila JR (2016) Parasites and diseases. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 351–386Google Scholar
  31. Goodall-Copestake W, Perez-Espona S, Clark M, Murphy E, Seear P, Tarling G (2010) Swarms of diversity at the gene cox1 in Antarctic krill. Heredity 104(5):513–518CrossRefGoogle Scholar
  32. Goodall-Copestake W, Tarling G, Murphy E (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109(1):50–56CrossRefGoogle Scholar
  33. Gregory (2005) Animal genome size database.
  34. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, IL, USAGoogle Scholar
  35. Ikeda T (1989) RNA content of Antarctic krill (Euphausia superba Dana), an estimator of natural growth rate. Proc NIPR Symp Polar Biol 1989:26–33Google Scholar
  36. Jarman SN (2001a) DNA evolution in krill. PhD thesis, University of TasmaniaGoogle Scholar
  37. Jarman SN (2001b) The evolutionary history of krill inferred from nuclear large subunit rDNA sequence analysis. Biol J Linn Soc 73(2):199–212Google Scholar
  38. Jarman S, Elliott N, Nicol S, McMinn A, Newman S (1999) The base composition of the krill genome and its potential susceptibility to damage by UV-B. Antarct Sci 11(01):23–26CrossRefGoogle Scholar
  39. Jarman SN, Elliott NG, Nicol S, McMinn A (2000a) Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea). Can J Fish Aquat Sci 57(S3):51–58CrossRefGoogle Scholar
  40. Jarman SN, Nicol S, Elliott NG, McMinn A (2000b) 28S rDNA evolution in the Eumalacostraca and the phylogenetic position of krill. Mol Phylogenet Evol 17(1):26–36CrossRefGoogle Scholar
  41. Jarman SN, Gales NJ, Tierney M, Gill PC, Elliott NG (2002) A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Mol Ecol 11(12):2679–2690CrossRefGoogle Scholar
  42. Jarman SN, McInnes JC, Faux C, Polanowski AM, Marthick J, Deagle BE, Southwell C, Emmerson L (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8(12):e0082227CrossRefGoogle Scholar
  43. Jeffery NW (2011) The first genome size estimates for six species of krill (Malacostraca, Euphausiidae): large genomes at the north and south poles. Polar Biol 35(6):959–962CrossRefGoogle Scholar
  44. Jenner RA, Dhubhghaill CN, Ferla MP, Wills MA (2009) Eumalacostracan phylogeny and total evidence: limitations of the usual suspects. BMC Evol Biol 9(1):21CrossRefGoogle Scholar
  45. Johansson M, Duda E, Sremba A, Banks M, Peterson W (2012a) Assessing population-level variation in the mitochondrial genome of Euphausia superba using 454 next-generation sequencing. Mol Biol Rep 39(5):5755–5760CrossRefGoogle Scholar
  46. Johansson M, Sremba A, Feinberg L, Banks M, Peterson W (2012b) The mitochondrial genomes of Euphausia pacifica and Thysanoessa raschii sequenced using 454 next-generation sequencing, with a phylogenetic analysis of their position in the Malacostracan family tree. Mol Biol Rep 39(9):9009–9021CrossRefGoogle Scholar
  47. Kawaguchi S (2016) Reproduction and larval development in Antarctic krill (Euphausia superba). In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 225–246Google Scholar
  48. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1CrossRefGoogle Scholar
  49. Lee C, Kibblewhite-Accinelli R, Wagschal K, Robertson G, Wong DS (2006) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10(4):295–300CrossRefGoogle Scholar
  50. Leese F, Brand P, Rozenberg A, Mayer C, Agrawal S, Dambach J, Dietz L, Doemel JS, Goodall-Copstake WP, Held C, Jackson JA, Lampert KP, Linse K, Macher JN, Nolzen J, Raupach MJ, Rivera NT, Schubart CD, Striewski S, Tollrian R, Sands CJ (2012) Exploring pandora’s box: potential and pitfalls of low coverage genome surveys for evolutionary biology. PLoS ONE 7(11):e49202CrossRefGoogle Scholar
  51. Maas A, Waloszek D (2001) Larval development of Euphausia superba Dana, 1852 and a phylogenetic analysis of the Euphausiacea. Hydrobiologia 448(1–3):143–169CrossRefGoogle Scholar
  52. MacDonald CM, Williams R, Adams M (1986) Genetic variation and population structure of krill (Euphausia superba Dana) from the Prydz Bay region of Antarctic waters. Polar Biol 6(4):233–236CrossRefGoogle Scholar
  53. Machida R, Miya M, Yamauchi M, Nishida M, Nishida S (2004) Organization of the mitochondrial genome of Antarctic krill Euphausia superba (Crustacea: Malacostraca). Mar Biotechnol 6(3):238–250CrossRefGoogle Scholar
  54. Martin DL, Ross RM, Quetin LB, Murray AE (2006) Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar Ecol Prog Ser 319:155–165CrossRefGoogle Scholar
  55. Mazzotta GM, De Pittà C, Benna C, Tosatto SC, Lanfranchi G, Bertolucci C, Costa R (2010) A cry from the krill. Chronobiol Int 27(3):425–445CrossRefGoogle Scholar
  56. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46CrossRefGoogle Scholar
  57. Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27(11):2451–2464CrossRefGoogle Scholar
  58. Meyer B, Teschke M (2016) Physiology of Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 145–174Google Scholar
  59. Meyer B, Martini P, Biscontin A, De Pitta C, Roumaldi C, Teschke M, Frichenhaus S, Harmns L, Frier U, Jarman S, Kawaguchi S (2015) Pyroseqencing and de novo assembly of the Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate induced environmental changes. Mol Ecol Res 15(6):1460–1471CrossRefGoogle Scholar
  60. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767CrossRefGoogle Scholar
  61. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martinez-Garcia PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, deJong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59CrossRefGoogle Scholar
  62. Nicol S, Foster J (2016) The fishery for Antarctic krill – its current status and management regime. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 387–422Google Scholar
  63. Osnes KK, Mohr V (1985) Peptide hydrolases of Antartic krill, Euphausia superba. Comp Biochem Phys B 82(4):599–606Google Scholar
  64. Passmore AJ, Jarman SN, Swadling KM, Kawaguchi S, McMinn A, Nicol S (2006) DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Mar Biotechnol 8(6):686–696CrossRefGoogle Scholar
  65. Patarnello T, Bargelloni L, Varotto V, Battaglia B (1996) Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol 126(4):603–608CrossRefGoogle Scholar
  66. Podsiadlowski L, Bartolomaeus T (2005) Organization of the mitochondrial genome of mantis shrimp Pseudosquilla ciliata (Crustacea: Stomatopoda). Mar Biotechnol 7(6):618–624CrossRefGoogle Scholar
  67. Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N (2012) Application of next-generation sequencing technologies in virology. J Gen Virol 93(9):1853–1868CrossRefGoogle Scholar
  68. Rees DJ, Dufresne F, Glémet H, Belzile C (2007) Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome 50(2):151–158CrossRefGoogle Scholar
  69. Reiss CS (2016) Age, growth, mortality, and recruitment of Antarctic krill, Euphausia superba. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 101–144Google Scholar
  70. Rolfe WI (1981) Phyllocarida and the origin of the Malacostraca. Geobios 14(1):17–26CrossRefGoogle Scholar
  71. Schmidt K, Atkinson A (2016) Feeding and food processing in Antarctic krill (Euphausia superba Dana). In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 175–224Google Scholar
  72. Schneppenheim R, MacDonald C (1984) Genetic variation and population structure of krill (Euphausia superba) in the Atlantic sector of Antarctic waters and off the Antarctic Peninsula. Polar Biol 3(1):19–28CrossRefGoogle Scholar
  73. Schram FR (1981) On the classification of Eumalacostraca. J Crust Biol 1(1):1–10CrossRefGoogle Scholar
  74. Seear P, Tarling GA, Teschke M, Meyer B, Thorne MAS, Clark MS, Gaten E, Rosato E (2009) Effects of simulated light regimes on gene expression in Antarctic krill (Euphausia superba Dana). J Exp Mar Biol Ecol 381(1):57–64CrossRefGoogle Scholar
  75. Seear PJ, Tarling GA, Burns G, Goodall-Copestake WP, Gaten E, Ozkaya O, Rosato E (2010) Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics 11(1):582CrossRefGoogle Scholar
  76. Seear PJ, Goodall-Copestake WP, Fleming AH, Rosato E, Tarling GA (2012) Seasonal and spatial influences on gene expression in Antarctic krill Euphausia superba. Mar Ecol Prog Ser 467:61–75CrossRefGoogle Scholar
  77. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629CrossRefGoogle Scholar
  78. Shen X, Wang H, Ren J, Tian M, Wang M (2010) The mitochondrial genome of Euphausia superba (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers. Mol Biol Rep 37(2):771–784CrossRefGoogle Scholar
  79. Shen X, Wang H, Wang M, Liu B (2011) The complete mitochondrial genome sequence of Euphausia pacifica (Malacostraca: Euphausiacea) reveals a novel gene order and unusual tandem repeats. Genome 54(11):911–922CrossRefGoogle Scholar
  80. Shin H-C, Nicol S, King RA (2003) Nucleic acid content as a potential growth rate estimator of Antarctic krill; results from field-caught krill from the Indian sector of the southern ocean. Mar Freshw Behav Phys 36(4):295–305CrossRefGoogle Scholar
  81. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805CrossRefGoogle Scholar
  82. Siegel V, Watkins W (2016) Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V (ed) The biology and ecology of antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 21–100Google Scholar
  83. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792CrossRefGoogle Scholar
  84. Spiridonov VA (1992) The preanal plate and spine of Euphausiacea (Crustacea, Eucarida), their variability and homology (with particular reference to the austral species of the genus Euphausia Dana). Russ J Arthropodan Res 1(4):3–15Google Scholar
  85. Stankovic A, Borsuk P, Koper M, Weglenski P (2002) Studies on Ephelota sp., an epizoic suctorian found on Antarctic krill. Polar Biol 25(11):827–832Google Scholar
  86. Takayama S, Dhahbi J, Roberts A, Mao G, Heo S-J, Pachter L, Martin D, Boffelli D (2014) Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 24(5):821–830CrossRefGoogle Scholar
  87. Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B (2011) A circadian clock in antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba. PLoS ONE 6(10):e26090CrossRefGoogle Scholar
  88. Thiriot-Quiévreux C, Leitão A, Cuzin-Roudy J (1998) Chromosome diversity in Mediterranean and Antarctic Euphausiid species (Euphausiacea). J Crust Biol 18(2):290–297CrossRefGoogle Scholar
  89. Töbe K, Meyer B, Fuentes V (2010) Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biol 33(3):407–414CrossRefGoogle Scholar
  90. Toullec J-Y, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS (2013) Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the ice krill, Euphausia crystallorophias. PLoS ONE 8(8):e71609CrossRefGoogle Scholar
  91. Trathan PN, Hill SL (2016) The importance of krill predation in the Southern Ocean. In: Siegel V (ed) The biology and ecology of Antarctic krill, Euphausia superba Dana, 1850. Springer, Cham, pp 321–350Google Scholar
  92. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46Google Scholar
  93. Turkiewicz M, Kalinowska H, Zielińska M, Bielecki S (2000) Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comp Biochem Phys B 127(3):325–335CrossRefGoogle Scholar
  94. Van Ngan P, Gomes V, Suzuki H, Passos MJACR (1989) Preliminary study on chromosomes of Antarctic krill, Euphausia superba Dana. Polar Biol 10(2):149–150CrossRefGoogle Scholar
  95. Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front Zool 5(1):5–12CrossRefGoogle Scholar
  96. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89(5):438–450CrossRefGoogle Scholar
  97. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87(2263):430–431Google Scholar
  98. Yabu H, Kawamura A (1984) Chromosomes of Euphausia superba Dana. Bull Plank Soc Jpn 31:61–63Google Scholar
  99. Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T (1998) Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations. Proc R Soc Lond B Biol 265(1413):2387–2391CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
  2. 2.Australian Antarctic DivisionKingstonAustralia

Personalised recommendations