Structure of a Media Co-occurrence Network

Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Social networks have been of much interest in recent years. We here focus on a network structure derived from co-occurrences of people in traditional newspaper media. We find three clear deviations from what can be expected in a random graph. First, the average degree in the empirical network is much lower than expected, and the average weight of a link much higher than expected. Secondly, high degree nodes attract disproportionately much weight. Thirdly, relatively much of the weight seems to concentrate between high degree nodes. We believe this can be explained by the fact that most people tend to co-occur repeatedly with the same people. We create a model that replicates these observations qualitatively based on two self-reinforcing processes: (1) more frequently occurring persons are more likely to occur again; and (2) if two people co-occur frequently, they are more likely to co-occur again. This suggest that the media tends to focus on people that are already in the news, and that they reinforce existing co-occurrences.

References

  1. 1.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Physica A 346(1–2), 34–43 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–98 (2009)CrossRefGoogle Scholar
  7. 7.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. Soc. Ind. Appl. Math. 51(4), 661–703 (2009)MathSciNetMATHGoogle Scholar
  8. 8.
    Corten, R.: Composition and structure of a large online social network in the netherlands. PLoS ONE 7(4), e34760 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Cranmer, S.J., Menninga, E.J., Mucha, P.J.: Kantian fractionalization predicts the conflict propensity of the international system. arXiv:1402.0126 [physics] (2014)
  10. 10.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Ferrara, E.: A large-scale community structure analysis in facebook. EPJ Data Sci. 1(1), 9 (2012)CrossRefGoogle Scholar
  12. 12.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. p. 363–370. Association for Computational Linguistics, Stroudsburg, PA, USA (2005)Google Scholar
  13. 13.
    Garlaschelli, D., Caldarelli, G., Pietronero, L.: Universal scaling relations in food webs. Nature 423(6936), 165–8 (2003)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Garlaschelli, D., Loffredo, M.I.: Structure and evolution of the world trade network. Physica A 355(1), 138–144 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–82 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Guimerà, R., Stouffer, D.B., Sales-Pardo, M., Leicht, E.A., Newman, M.E.J., Amaral, L.A.N.: Origin of compartmentalization in food webs. Ecology 91(10), 2941–2951 (2010)CrossRefGoogle Scholar
  17. 17.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3(1), 63–69 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)CrossRefGoogle Scholar
  19. 19.
    Joshi, D., Gatica-Perez, D.: Discovering groups of people in google news. In: Proceedings of the 1st ACM International Workshop on Human-centered Multimedia, pp. 55–64. HCM ’06, ACM, New York, NY, USA (2006)Google Scholar
  20. 20.
    Knoke, D., Yang, S.: Social Network Analysis. In: Quantitative Applications in the Social Sciences, vol. 154, 2nd edn. SAGE Publications, Inc, Cambridge, Mass (2007)Google Scholar
  21. 21.
    Kumpula, J.M., Onnela, J.P., Saramäki, J., Kaski, K., Kertész, J.: Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)Google Scholar
  22. 22.
    Maoz, Z., Terris, L.G., Kuperman, R.D., Talmud, I.: What is the enemy of my enemy? causes and consequences of imbalanced international relations, 1816–2001. J. Politic. 69(01), 100–115 (2008)CrossRefGoogle Scholar
  23. 23.
    Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518. CIKM ’08, ACM, New York, NY, USA (2008)Google Scholar
  24. 24.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., de Menezes, M.A., Kaski, K., Barabási, A.L., Kertész, J.: Analysis of a large-scale weighted network of one-to-one human communication. New. J. Phys. 9(6), 179–179 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Ou, Q., Jin, Y.D., Zhou, T., Wang, B.H., Yin, B.Q.: Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. Phys. Rev. E 75(2), 021102 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Özgür, A., Bingol, H.: Social network of co-occurrence in news articles. In: Aykanat, C., Dayar, T., Korpeoglu, I. (eds.) Computer and Information Sciences—ISCIS 2004, pp. 688–695. No. 3280 in Lecture Notes in Computer Science. Springer Verlag, Heidelberg (2004)Google Scholar
  28. 28.
    Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS ONE 8(6), e66506 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Pouliquen, B., Tanev, H., Atkinson, M.: Extracting and learning social networks out of multilingual news. In: Social Networks and application tools (2008)Google Scholar
  30. 30.
    Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Steinberger, R., Pouliquen, B.: Cross-lingual named entity recognition. Ling. Inv. 30(1), 135–162 (2007)Google Scholar
  32. 32.
    Traag, V.A., Van Dooren, P., Nesterov, Y.: Narrow scope for resolution-limit-free community detection. Phys. Rev. E 84(1), 016114 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A 391(16), 4165–4180 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Wang, W.X., Wang, B.H., Hu, B., Yan, G., Ou, Q.: General dynamics of topology and traffic on weighted technological networks. Phys. Rev. Lett. 94(18), 188702 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CWTSLeiden UniversityLeidenThe Netherlands
  2. 2.Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.KITLVLeidenThe Netherlands

Personalised recommendations