Advertisement

Chimera States in Neuronal Systems of Excitability Type-I

  • Philipp HövelEmail author
  • Andrea Vüllings
  • Iryna Omelchenko
  • Johanne Hizanidis
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Chimera states is a fascinating phenomenon of coexisting synchronized and desynchronized behavior discovered in networks of nonlocally coupled identical phase oscillators. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative for neuron excitability type-I. It is given by N nonlocally coupled SNIPER oscillators in the oscillatory regime arranged on a ring. Depending on the system parameters we obtain chimera states with multiple coherent regions (clustered chimeras), coexisting traveling waves, and we observe a flip in the mean phase velocities of the coherent and incoherent regions.

Keywords

Phase Velocity Coupling Strength Bifurcation Parameter Coherent Oscillator Coherent Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank A. Provata and E. Schöll for stimulating discussions. This work was supported by the German Academic Exchange Service DAAD and the Greek State Scholarship Foundation IKY within the PPP-IKYDA framework. IO and PH acknowledge support by BMBF (grant no. 01Q1001B) in the framework of BCCN Berlin (Project A13). PH, AV, and IO acknowledge support by DFG in the framework of the Collaborative Research Center 910. The research work was partially supported by the European Union’s Seventh Framework Program (FP7-REGPOT-2012-2013-1) under grant agreement n316165.

References

  1. 1.
    Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and Incoherence in nonlocally coupled phase oscillators. Nonlin. Phen. Complex Sys. 5(4), 380–385 (2002)Google Scholar
  2. 2.
    Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hagerstrom, A.M., Murphy, T.E., Roy, R., Hövel, P., Omelchenko, I., Schöll, E.: Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658–661 (2012)CrossRefGoogle Scholar
  5. 5.
    Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662–665 (2012)CrossRefGoogle Scholar
  6. 6.
    Martens, E.A., Thutupalli, S., Fourrière, A., Hallatschek, O.: Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. 110, 10563 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Wickramasinghe, M., Kiss, I.Z.: Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns. PLoS ONE 8(11), e80586 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Larger, L., Penkovsky, B., Maistrenko, Y.: Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett. 111, 054103 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Omelchenko, I., Zakharova, A., Hövel, P., Siebert, J., Schöll, E.: Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25, 083104 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Buscarino, A., Frasca, M., Gambuzza, L.V., Hövel, P.: Chimera states in time-varying complex networks. Phys. Rev. E 91(2), 022817 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Omel’chenko, O.E.: Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity 26(9), 2469 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Laing, C.R., Chow, C.C.: Stationary bumps in networks of spiking neurons. Neural Comput. 13(7), 1473–1494 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rattenborg, N.C., Amlaner, C.J., Lima, S.L.: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24, 817–842 (2000)CrossRefGoogle Scholar
  16. 16.
    Olmi, S., Politi, A., Torcini, A.: Collective chaos in pulse-coupled neural networks. Europhys. Lett. 92, 60007 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Omelchenko, I., Omel’chenko, O.E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hizanidis, J., Kanas, V., Bezerianos, A., Bountis, T.: Chimera states in networks of nonlocally coupled hindmarsh-rose neuron models. Int. J. Bifur. Chaos 24(03), 1450030 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifur. Chaos 10(6), 1171–1266 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sethia, G.C., Sen, A., Atay, F.M.: Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100(14), 144102 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Aust, R., Hövel, P., Hizanidis, J., Schöll, E.: Delay control of coherence resonance in type-I excitable dynamics. Eur. Phys. J. ST 187, 77–85 (2010)CrossRefGoogle Scholar
  23. 23.
    Ditzinger, T., Ning, C.Z., Hu, G.: Resonance like responses of autonomous nonlinear systems to white noise. Phys. Rev. E 50, 3508 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Hizanidis, J., Aust, R., Schöll, E.: Delay-induced multistability near a global bifurcation. Int. J. Bifur. Chaos 18(6), 1759–1765 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hu, B.Y.K., Das Sarma, S.: Many-body exchange-correlation effects in the lowest subband of semiconductor quantum wires. Phys. Rev. B 48, 5469 (1993)Google Scholar
  26. 26.
    Omel’chenko, O.E., Maistrenko, Y., Tass, P.A.: Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100(4), 044105 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Omel’chenko, O.E., Maistrenko, Y., Tass, P.A.: Chimera states induced by spatially modulated delayed feedback. Phys. Rev. E 82, 066201 (2010)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Maistrenko, Y., Vasylenko, A., Sudakov, O., Levchenko, R., Maistrenko, V.L.: Cascades of multi-headed chimera states for coupled phase oscillators. Int. J. Bifur. Chaos 24(8), 1440014 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sethia, G.C., Sen, A., Johnston, G.L.: Amplitude-mediated chimera states. Phys. Rev. E 88(4), 042917 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Dziubak, V., Maistrenko, Y., Schöll, E.: Coherent traveling waves in nonlocally coupled chaotic systems. Phys. Rev. E 87(3), 032907 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Omel’chenko, O.E., Wolfrum, M., Maistrenko, Y.: Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81(6), 065201(R) (2010)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101(8), 084103 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philipp Hövel
    • 1
    • 2
    Email author
  • Andrea Vüllings
    • 1
  • Iryna Omelchenko
    • 1
  • Johanne Hizanidis
    • 3
    • 4
  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany
  2. 2.Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.National Center for Scientific Research “Demokritos”AthensGreece
  4. 4.Crete Center for Quantum Complexity and Nanotechnology, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations