Normative Control: Controlling Open Distributed Systems with Autonomous Entities

  • Jan KantertEmail author
  • Sarah Edenhofer
  • Sven Tomforde
  • Jörg Hähner
  • Christian Müller-Schloer
Part of the Autonomic Systems book series (ASYS)


Open distributed systems consisting of a potentially large set of autonomous entities might not be controllable directly. More precisely, standard control interventions, such as altering parameters and behaviour, are not possible due to the entity’s autonomy. However, indirect control using socio-inspired mechanisms can be applied to guide the system’s behaviour and influence the distributed entities using sanctions and incentives. The demanded behaviour as well as the corresponding sanctions and incentives are coded as norms and generated in response to perceived environmental and internal conditions. Such a norm is issued by centralised authorities. Norm violation is monitored using a higher-level observer in a distributed manner. After an introduction and motivation for using social mechanisms in technical systems, we present a novel normative control loop establishing the afore-described concept within a Trusted Desktop Grid scenario. The evaluation demonstrates the potential benefit in terms of an increased system robustness and fast recovery from attack states.


Organic computing Agent organisation Norms Normative control Open distributed systems Desktop grid 



This research is partly sponsored by the research unit OC-Trust (FOR 1085) of the German Research Foundation.


  1. 1.
    Wooldridge, M.J.: Agent technology: foundations, applications, and markets. Springer, Berlin/Heidelberg/New York (1998). ISBN:3-540-63591-2zbMATHGoogle Scholar
  2. 2.
    Tomforde, S., Hähner, J., Seebach, H., Reif, W., Sick, B., Wacker, A., Scholtes, I.: Engineering and mastering interwoven systems. In: ARCS 2014 – 27th International Conference on Architecture of Computing Systems, Workshop Proceedings, Luebeck, University of Luebeck, Institute of Computer Engineering, 25–28 Feb 2014, pp. 1–8 (2014).
  3. 3.
    Kantert, J., Wildemann, S., von Zengen, G., Edenhofer, S., Tomforde, S., Wolf, L., Hähner, J., Müller-Schloer, C.: Improving reliability and endurance using end-to-end trust in distributed low-power sensor networks. In: Pinho, L., Karl, W., Cohen, A., Brinkschulte, U. (eds.) Proceedings of the 28th International Conference on Architecture of Computing Systems (ARCS 2015), vol. 9017, pp. 135–145. Springer (2015). ISBN:978-3-319-16085-6Google Scholar
  4. 4.
    Kantert, J., Edenhofer, S., Tomforde, S., Müller-Schloer, C.: Distributed rendering in an open self-organised trusted desktop grid. In: ICAC 2015, pp. 267–272. IEEE, Grenobles (2015)Google Scholar
  5. 5.
    Bernard, Y., Klejnowski, L., Hähner, J., Müller-Schloer, C.: Towards trust in desktop grid systems. In: Proceedings of CCGrid 2010, Melbourne, pp. 637–642 (2010)Google Scholar
  6. 6.
    Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model. Wiley, Chichester (2010). ISBN:0470028750, 9780470028759Google Scholar
  7. 7.
    Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter, U., Schmeck, H.: Observation and control of organic systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing – A Paradigm Shift for Complex Systems, pp. 325–338. Birkhäuser, Basel (2011)CrossRefGoogle Scholar
  8. 8.
    Pitt, J., Schaumeier, J., Artikis, A.: The axiomatisation of socio-economic principles for self-organising systems. In: 2011 Fifth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 138–147. IEEE, Michigan (2011)Google Scholar
  9. 9.
    Russell, S., Norvig, P., Intelligence, A.: Artificial Intelligence: A Modern Approach, vol. 25. Prentice-Hall, Egnlewood Cliffs (1995)zbMATHGoogle Scholar
  10. 10.
    Dawkin, R.: The Selfish Gene. Oxford University Press, New York (1976)Google Scholar
  11. 11.
    Osborne, M.J.: An Introduction to Game Theory. Oxford University Press (2003). ISBN:0195128958Google Scholar
  12. 12.
    Nash, J.F.: Non-cooperative games. PhD thesis, Princeton University (1950)Google Scholar
  13. 13.
    Binmore, K.: The Origins of Fair Play. Max Planck Institute of Economics, Evolutionary Economics Group (2006)Google Scholar
  14. 14.
    Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)CrossRefGoogle Scholar
  15. 15.
    Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  16. 16.
    Klejnowski, L.: Trusted community: a novel multiagent organisation for open distributed systems. PhD thesis, Leibniz Universität Hannover (2014).
  17. 17.
    Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 5, 1–32 (2010). ISSN:1556-4665Google Scholar
  18. 18.
    Centeno, R., Billhardt, H.: Using incentive mechanisms for an adaptive regulation of open multi-agent systems. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 1, pp. 139–145 Barcelona (2011)Google Scholar
  19. 19.
    Hermoso, R., Billhardt, H., Ossowski, S.: Role evolution in open multi-agent systems as an information source for trust. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 217–224 Toronto (2010)Google Scholar
  20. 20.
    Centeno, R., Billhardt, H., Hermoso, R.: An adaptive sanctioning mechanism for open multi-agent systems regulated by norms. In: 2011 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Boca Raton, pp. 523–530 (2011)Google Scholar
  21. 21.
    Anglano, C., Canonico, M., Guazzone, M., Botta, M., Rabellino, S., Arena, S., Girardi, G.: Peer-to-peer desktop grids in the real world: the ShareGrid project. In: Proceedings of CC-Grid 2008, vol. 8(4), pp. 609–614 Lyon (2008)Google Scholar
  22. 22.
    Chakravarti, A.J., Baumgartner, G., Lauria, M.: Application-specific scheduling for the organic grid. In: Proceedings of GRID 2004 Workshops, pp. 146–155. IEEE, Washington, DC (2004). ISBN:0-7695-2256-4Google Scholar
  23. 23.
    Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Proceedings of CCGRID 2006, pp. 73–80. IEEE, Singapore (2006). ISBN:0-7695-2585-7Google Scholar
  24. 24.
    Jain, R., Babic, G., Nagendra, B., Lam, C.-C.: Fairness, call establishment latency and other performance metrics. ATM-Forum 96, 1–6 (1996)Google Scholar
  25. 25.
    Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm. In: Symposium Proceedings on Communications Architectures & Protocols, pp. 1–12. ACM, New York (1989)Google Scholar
  26. 26.
    Bennett, J.C., Zhang, H.: WF2Q: worst-case fair weighted fair queueing. In: INFOCOM ’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next Generation. Proceedings IEEE, vol. 1, pp. 120–128. IEEE, San Francisco (1996)Google Scholar
  27. 27.
    Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19, 281–316 (2004)CrossRefGoogle Scholar
  28. 28.
    Oussalah, M., Griffiths, N.: Cooperative clans. Kybernetes 34, 1384–1403 (2005)CrossRefGoogle Scholar
  29. 29.
    Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT, Cambridge (1994). ISBN:0-262-18159-2Google Scholar
  30. 30.
    Hewitt, C.: Open information systems semantics for distributed artificial intelligence. Artif. Intell. 47, 79–106 (1991)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R.: Fault-aware scheduling for bag-of-tasks applications on desktop grids. In: Proceedings of GRID 2006, pp. 56–63. IEEE, Singapore (2006). ISBN:1-4244-0343-XGoogle Scholar
  32. 32.
    Choi, S., Kim, H., Byun, E., Baik, M., Kim, S., Park, C., Hwang, C.: Characterizing and classifying desktop grid. In: Proceedings of CCGRID 2007, pp. 743–748. IEEE, Rio de Janeiro (2007)Google Scholar
  33. 33.
    Choi, S., Buyya, R., Kim, H., Byun, E.: A taxonomy of desktop grids and its mapping to state of the art systems. Technical report, Grid Computing and Distributed Systems Laboratory, The University of Melbourne, pp. 1–61 (2008)Google Scholar
  34. 34.
    Wang, Y., Vassileva, J.: Trust-based community formation in peer-to-peer file sharing networks. In: Proceedings on Web Intelligence, pp. 341–348. IEEE, Beijing (2004)Google Scholar
  35. 35.
    Domingues, P., Sousa, B., Moura Silva, L.: Sabotage-tolerance and trustmanagement in desktop grid computing. Future Generat. Comput. Syst. 23, 904–912 (2007)CrossRefGoogle Scholar
  36. 36.
    Sartor, G.: Legal Reasoning: A Cognitive Approach to Law. Springer, Berlin/Heidelberg (2005)Google Scholar
  37. 37.
    Nute, D.: Defeasible logic. Handb. Log. Artif. Intell. Log. Program. 3, 353–395 (1994)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Nute, D.: Defeasible reasoning: a philosophical analysis in prolog. In: Aspects of Artificial Intelligence, pp. 251–288. Springer, Berlin/Heidelberg (1988)Google Scholar
  39. 39.
    Nute, D.: Defeasible logic. In: Proceedings of the Applications of Prolog 14th International Conference on Web Knowledge Management and Decision Support, pp. 151–169. Springer, Berlin/Heidelberg (2003). ISBN:3-540-00680-XGoogle Scholar
  40. 40.
    Billington, D.: Defeasible logic is stable. J. Log. Comput. 3, 379–400 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Urzicaă, A., Gratie, C.: Policy-based instantiation of norms in MAS. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI, vol. 446, pp. 287–296. Springer, Calabria (2013)CrossRefGoogle Scholar
  42. 42.
    Balke, T., da Costa Pereira, C., Dignum, F., Lorini, E., Rotolo, A., Vasconcelos, W., Villata, S.: Norms in MAS: definitions and related concepts. In: Normative Multi-Agent Systems, vol. 4, pp. 1–31. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013). ISBN:978-3-939897-51-4Google Scholar
  43. 43.
    Von Wright, G.H.: Norms and Action: A Logical Enquiry. Routledge & Kegan Paul, London (1963)Google Scholar
  44. 44.
    Tuomela, R., Bonnevier-Tuomela, M.: Norms and agreements. Eur. J. Law Philos. Comput. Sci. 5, 41–46 (1995)Google Scholar
  45. 45.
    Hollander, C.D., Wu, A.S.: The current state of normative agent-based systems. J. Artif. Soc. Soc. Simul. 14, 6 (2011). ISSN:1460-7425Google Scholar
  46. 46.
    Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell. Law 7, 97–113 (1999)CrossRefGoogle Scholar
  47. 47.
    Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defeasible logic. Auton. Agents Multi-Agent Syst. 17, 36–69 (2008). ISSN:1387-2532Google Scholar
  48. 48.
    Artikis, A., Pitt, J.: Specifying open agent systems: a survey. In: Artikis, A., Picard, G., Vercouter, L. (eds.) Engineering Societies in the Agents World IX, vol. 5485, pp. 29–45. Springer, Saint-Etienne (2009). ISBN:978-3-642-02561-7CrossRefGoogle Scholar
  49. 49.
    Boella, G., Pigozzi, G., van der Torre, L.: Normative systems in computer science – ten guidelines for normative multiagent systems. In: Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems, pp. 1–21. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Dagstuhl (2009)Google Scholar
  50. 50.
    Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Müller, J., Rao, A., Singh, M. (eds.) Intelligent Agents V: Agents Theories, Architectures, and Languages, vol. 1555, pp. 99–112. Springer, Paris (1999). ISBN:978-3-540-65713-2CrossRefGoogle Scholar
  51. 51.
    Savarimuthu, B.T.R., Cranefield, S.: Norm creation, spreading and emergence: a survey of simulation models of norms in multi-agent systems. Multiagent Grid Syst. 7, 21–54 (2011)CrossRefGoogle Scholar
  52. 52.
    Singh, M.P., et al.: The uses of norms. In: Normative Multi-Agent Systems, vol. 4, pp. 191–229. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013). ISBN:978-3-939897-51-4Google Scholar
  53. 53.
    Wasserman, S.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  54. 54.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Waldschmidt, K., Damm, M.: Robustness in soc design. In: 9th EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools (DSD 2006), Dubrovnik, pp. 27–36 (2006)Google Scholar
  56. 56.
    Shestak, V., Siegel, H.J., Maciejewski, A.A., Ali, S.: The robustness of resource allocations in parallel and distributed computing systems. In: Architecture of Computing Systems-ARCS 2006, pp. 17–30. Springer, Berlin/Heidelberg (2006)Google Scholar
  57. 57.
    England, D., Weissman, J., Sadagopan, J.: A new metric for robustness with application to job scheduling. In: Proceedings of 14th IEEE International Symposium on High Performance Distributed Computing (HPDC-14 2005), Research Triangle Park, pp. 135–143 (2005)Google Scholar
  58. 58.
    Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML. Addison-Wesley Longman, Boston (1999). ISBN:0-201-37940-6Google Scholar
  59. 59.
    Steghöfer, J.-P., Anders, G., Reif, W., Kantert, J., Müller-Schloer, C.: An effective implementation of norms in trust-aware open self-organising systems. In: 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pp. 76–77. IEEE, London (2014)Google Scholar
  60. 60.
    Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. 5, 10:1–10:32 (2010). ISSN:1556-4665Google Scholar
  61. 61.
    Kantert, J., Klejnowski, L., Bernard, Y., Müller-Schloer, C.: Influence of norms on decision making in trusted desktop grid systems: making norms explicit. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 278–283. SciTePress, Angers (2014)Google Scholar
  62. 62.
    Kantert, J., Scharf, H., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: A graph analysis approach to detect attacks in multi-agent-systems at runtime. In: 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems, pp. 80–89. IEEE, London (2014)Google Scholar
  63. 63.
    Kantert, J., Bödelt, S., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: Interactive simulation of an open trusted desktop grid system with visualisation in 3D. In: 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 191–192. IEEE, London (2014)Google Scholar
  64. 64.
    Kantert, J., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: Defending autonomous agents against attacks in multi-agent systems using norms. In: Proceedings of the 7th International Conference on Agents and Artificial Intelligence. SciTePress, Lisbon, pp. 149–156 (2015)Google Scholar
  65. 65.
    Van Dongen, S.M.: Graph clustering by flow simulation. PhD thesis, Utrecht University (2001).
  66. 66.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM, Montreal (1996)Google Scholar
  67. 67.
    Fraga, D., Banković, Z., Moya, J.M.: A taxonomy of trust and reputation system attacks. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Liverpool, pp. 41–50 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jan Kantert
    • 1
    Email author
  • Sarah Edenhofer
    • 2
  • Sven Tomforde
    • 2
  • Jörg Hähner
    • 2
  • Christian Müller-Schloer
    • 3
  1. 1.Institute of Systems EngineeringLeibniz Universität HannoverHannoverGermany
  2. 2.Organic Computing GroupUniversity of AugsburgAugsburgGermany
  3. 3.Institute of Systems EngineeringUniversity of HannoverHannoverGermany

Personalised recommendations