Advertisement

ICSH 2015: Smart Health pp 118-130 | Cite as

A Game Theoretic Predictive Modeling Approach to Reduction of False Alarm

  • Fatemeh Afghah
  • Abolfazl Razi
  • S. M. Reza Soroushmehr
  • Somayeh Molaei
  • Hamid Ghanbari
  • Kayvan Najarian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9545)

Abstract

False alarm is one of the main concerns in intensive care units which could result in care disruption, sleep deprivation, insensitivity of care–givers to alarms and so on. Many approaches such as improving the quality of physiological signals by filtering and developing more accurate sensors have been proposed in the last two decades to suppress the rate of false alarm. Moreover, some multi–parameter/feature methods have been developed to classify the alarms more accurately. One of the main problems facing these methods is that they neglect those features that individually have low impact on the accuracy. In this paper, we propose a model based on coalition game that considers the inter–features mutual information which results in gaining the accuracy of the classification. Simulation results on a database produced by four hospitals shows the superior performance of the proposed method compared to other existing methods.

Keywords

False alarm Feature selection Coalition game theory Classification 

References

  1. 1.
    Reducing false arrhythmia alarms in the ICU. http://www.physionet.org/challenge/2015/. Accessed 7 September 2015
  2. 2.
    Afghah, F., Razi, A., Abedi, A.: Stochastic game theoretical model for packet forwarding in relay networks. Springer Telecommunication Systems Journal, Special Issue on Mobile Computing and Networking Technologies (2011)Google Scholar
  3. 3.
    Ansermino, J.M.: Intelligent patient monitoring and clinical decision making. In: Ehrenfeld, J.M., Cannesson, M. (eds.) Monitoring Technologies in Acute Care Environments, pp. 401–407. Springer, New York (2014)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, B., Rodel, K., Knoll, A.: A data mining approach to reduce the false alarm rate of patient monitors. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 5935–5938. IEEE (2012)Google Scholar
  5. 5.
    Behar, J., Oster, J., Li, Q., Clifford, G.D.: ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60(6), 1660–1666 (2013)CrossRefGoogle Scholar
  6. 6.
    Charbonnier, S., Gentil, S.: On-line adaptive trend extraction of multiple physiological signals for alarm filtering in intensive care units. Int. J. Adapt. Control Signal Process. 24(5), 382–408 (2010)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Clifford, G., Aboukhalil, A., Sun, J., Zong, W., Janz, B., Moody, G., Mark, R.: Using the blood pressure waveform to reduce critical false ECG alarms. In: Computers in Cardiology, 2006, pp. 829–832. IEEE (2006)Google Scholar
  8. 8.
    Cohen, S., Dror, G., Ruppin, G.: Feature selection via coalitional game theory. Neural Comput. 19(7), 1939–1961 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cvach, M.: Monitor alarm fatigue: an integrative review. Biomed. Instrum. Technol. 46(4), 268–277 (2012)CrossRefGoogle Scholar
  10. 10.
    Fan, J., Samworth, R., Wu, Y.: Ultrahigh dimensional feature selection: beyond the linear model. J. Mach. Learn. Res. 10, 2013–2038 (2009)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). http://dl.acm.org/citation.cfm?id=944919.944968 zbMATHGoogle Scholar
  12. 12.
    Imhoff, M., Kuhls, S.: Alarm algorithms in critical care monitoring. Anesth. Analg. 102(5), 1525–1537 (2006)CrossRefGoogle Scholar
  13. 13.
    Imhoff, M., Kuhls, S., Gather, U., Fried, R.: Smart alarms from medical devices in the OR and ICU. Best Pract. Res. Clin. Anaesthesiol. 23(1), 39–50 (2009)CrossRefGoogle Scholar
  14. 14.
    Kaufman, A., Kupiec, M., Ruppin, E.: Multi-knockout genetic network analysis: the Rad6 example. In: IEEE Computational Systems Bioinformatics Conference, (CSB 2004), pp. 332–340 (2004)Google Scholar
  15. 15.
    Keinan, A., Sandbank, B., Hilgetag, C., Meilijson, I., Ruppin, E.: Axiomatic scalable neurocontroller analysis via the shapley value. Artif. Life 12, 333–352 (2006)CrossRefGoogle Scholar
  16. 16.
    Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., Nowe, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1106–1119 (2012)CrossRefGoogle Scholar
  17. 17.
    Molina, L., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and experimental evaluation. In: Proceedings 2002 IEEE International Conference on Data Mining, ICDM 2003, pp. 306–313 (2002)Google Scholar
  18. 18.
    Philip, E.: Evaluation of medical alarm sounds. Ph.D. thesis, New Jersey Institute of Technology, Department of Biomedical Engineering (2009)Google Scholar
  19. 19.
    Razi, A., Afghah, F., Belle, A., Ward, K., Najarian, K.: Blood loss severity prediction using game theoretic based feature selection. In: IEEE-EMBS International Conferences on Biomedical and Health Informatics (BHI 2014), pp. 776–780 (2014)Google Scholar
  20. 20.
    Razi, A., Afghah, F., Varadan, V.: Identifying gene subnetworks associated with clinical outcome in ovarian cancer using network based coalition game. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference (EMBC 2015) (2015)Google Scholar
  21. 21.
    Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.W., Moody, G., Heldt, T., Kyaw, T.H., Moody, B., Mark, R.G.: Multiparameter intelligent monitoring in Intensive Care II (MIMIC-II): a public-access Intensive Care Unit database. Criti. Care Med. 39(5), 952 (2011)CrossRefGoogle Scholar
  22. 22.
    Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  23. 23.
    Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 2, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  24. 24.
    Sifuzzaman, M., Islam, M., Ali, M.: Application of wavelet transform and its advantages compared to fourier transform (2009)Google Scholar
  25. 25.
    Sun, X., Liu, Y., Li, J., Zhu, J., Chen, H., Liu, X.: Feature evaluation and selection with cooperative game theory. Pattern Recogn. 45(8), 2992–3002 (2012). http://dx.org/10.1016/j.patcog.2012.02.001 CrossRefGoogle Scholar
  26. 26.
    Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. Roy. Stat. Soc. 73(3), 273–282 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fatemeh Afghah
    • 1
  • Abolfazl Razi
    • 1
  • S. M. Reza Soroushmehr
    • 2
    • 3
  • Somayeh Molaei
    • 2
    • 3
  • Hamid Ghanbari
    • 4
  • Kayvan Najarian
    • 2
    • 3
    • 5
  1. 1.Electrical Engineering and Computer Science DepartmentNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Emergency MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Michigan Center for Integrative Research in Critical Care: MCIRCCUniversity of MichiganAnn ArborUSA
  4. 4.Internal MedicineUniversity of MichiganAnn ArborUSA
  5. 5.Computational Medicine and Bioinformatics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations