ICSH 2015: Smart Health pp 105-117 | Cite as

Predicting Pre-triage Waiting Time in a Maternity Emergency Room Through Data Mining

  • Sónia Pereira
  • Filipe PortelaEmail author
  • Manuel F. Santos
  • José Machado
  • António Abelha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9545)


An unsuitable patient flow as well as prolonged waiting lists in the emergency room of a maternity unit, regarding gynecology and obstetrics care, can affect the mother and child’s health, leading to adverse events and consequences regarding their safety and satisfaction. Predicting the patients’ waiting time in the emergency room is a means to avoid this problem. This study aims to predict the pre-triage waiting time in the emergency care of gynecology and obstetrics of Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto, situated in the north of Portugal. Data mining techniques were induced using information collected from the information systems and technologies available in CMIN. The models developed presented good results reaching accuracy and specificity values of approximately 74 % and 94 %, respectively. Additionally, the number of patients and triage professionals working in the emergency room, as well as some temporal variables were identified as direct enhancers to the pre-triage waiting time. The implementation of the attained knowledge in the decision support system and business intelligence platform, deployed in CMIN, leads to the optimization of the patient flow through the emergency room and improving the quality of services.


Data mining Classification algorithms Gynecology and obstetrics care Maternity care Emergency room Triage system Interoperability IDSS 



This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.


  1. 1.
    Bergs, J., Verelst, S., Gillet, J.-B., Deboutte, P., Vandoren, C., Vandijck, D.: The number of patients simultaneously present at the emergency department as an indicator of unsafe waiting times: a receiver operated curve-based evaluation. Int. Emerg. Nurs. 22, 185–189 (2014)CrossRefGoogle Scholar
  2. 2.
    Hoot, N., Aronsky, D.: Systematic review of emergency department crowding: causes, effects and solutions. Ann. Emerg. Med. 52, 126–136 (2008)CrossRefGoogle Scholar
  3. 3.
    Stover-Baker, B., Stahlman, B., Pollack, M.: Triage nurse prediction of hospital admission. J. Emerg. Nurs. 38(3), 306–310 (2012)CrossRefGoogle Scholar
  4. 4.
    Sun, Y., Teow, K., Heng, B., Ooi, C., Tay, S.: Real-time prediction of waiting time in the emergency department, using quantile regression. Ann. Emerg. Med. 60(3), 299–308 (2012)CrossRefGoogle Scholar
  5. 5.
    Boudreaux, E., O’Hea, E.: Patient satisfaction in the emergency department: a review of the literature and implications for practice. J. Emerg. Med. 26(1), 13–26 (2004)CrossRefGoogle Scholar
  6. 6.
    Shaikh, S., Witting, M., Winters, M., Brodeur, M., Jerrad, D.: Support for a waiting room time tracker: a survey of patients waiting in an urban ED. J. Emerg. Med. 44(1), 225–229 (2013)CrossRefGoogle Scholar
  7. 7.
    Taylor, C., Benger, J.: Patient satisfaction in emergency medicine. J. Emerg. Med. 21, 528–532 (2004)CrossRefGoogle Scholar
  8. 8.
    Khodambashi, S.: Business process re-engineering application in healthcare in a relation to health information systems. Procedia Technol. 9, 949–957 (2013)CrossRefGoogle Scholar
  9. 9.
    Pereira, E., Brandão, A., Salazar, M., Portela, F., Santos, M., Machado, J., Abelha, A., Braga, J.: Pre-triage decision support improvement in maternity care by means of data mining. In: Integration of Data Mining in Business Intelligence Systems, pp. 175–192 (2014)Google Scholar
  10. 10.
    Paul, J., Jordan, R., Duty, S., Engstrom, J.: Improving satisfaction with care and reducing length of stay in an obstetric triage unit using a nurse-midwife-managed model of care. J. Midwifery Women’s Health 58(2), 1–7 (2013)Google Scholar
  11. 11.
    Zocco, J., Williams, M., Longobucco, D., Bernstein, B.: A systems analysis of obstetric triage. J. Perinat. Neonatal Nurs. 21(4), 315–322 (2007)CrossRefGoogle Scholar
  12. 12.
    Murray, M., Bullard, M., Grafstein, E.: Revisions to the Canadian emergency department triage and acuity scale implementation guidelines. Cjem 6(6), 421–427 (2004)Google Scholar
  13. 13.
    Abelha, A., Pereira, E., Brandão, A., Portela, F., Santos, M., Machado, J., Braga, J.: Improving quality of services in maternity care triage system. Int. J. E-Health Med. Commun. 6(2), 10–26 (2015)CrossRefGoogle Scholar
  14. 14.
    Abelha, A., Quintas, C., Cabral, A., Salazar, M., Machado, H., Machado, J., Neves, J., Santos, M.F., Portela, C.F., Pina, C.: Data acquisition process for an intelligent decision support in gynecology and obstetrics emergency triage. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 223–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Abelha, A., Pereira, E., Brandão, A., Portela, F., Santos, M., Machado, J.: Simulating a multi-level priority triage system for Maternity Emergency. In: European Simulation and Modelling Conference (2014)Google Scholar
  16. 16.
    Portela, F., Cabral, A., Abelha, A., Salazar, M., Quintas, C., Machado, J., Santos, M.: Knowledge acquisition process for intelligent decision support in critical health care. In: Healthcare Administration: Concepts, Methodologies, Tools, and Applications, p. 270 (2014)Google Scholar
  17. 17.
    Abelha, A., Analide, C., Machado, J., Neves, J., Santos, M., Novais, P.: Ambient intelligence and simulation in health care virtual scenarios. In: Camarinha-Matos, L.M., Afsarmanesh, H., Novais, P., Analide, C. (eds.) EFCN 2007, Part I. IFIP, vol. 243, pp. 461–468. Springer, New York (2007)CrossRefGoogle Scholar
  18. 18.
    Abelha, A., Machado, J., Santos, M., Allegro, S., Rua, F., Paiva, M., Neves, J.: Agency for integration, diffusion and archive of medical information. In: IASTED International Conference - Artificial Intelligence and Applications (2002)Google Scholar
  19. 19.
    Peixoto, H., Santos, M., Abelha, A., Machado, J.: Intelligence in Interoperability with AIDA. In: 20th International Symposium on Methodologies for Intelligent Systems (2012)Google Scholar
  20. 20.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)Google Scholar
  21. 21.
    Lin, J., Gan, W., Hong, T.-P., Tseng, V.: Efficient algorithms for mining up-to-date high-utility patterns. Adv. Eng. Inform. 29(3), 648–661 (2015)CrossRefGoogle Scholar
  22. 22.
    Maimon, O., Rokach, L.: Introduction to Knowledge Discovery and Data Mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1–17. Springer, New York (2005)CrossRefGoogle Scholar
  23. 23.
    Xia, J., Xie, F., Zhang, Y., Caulfield, C.: Artificial intelligence and data mining: algorithms and applications. In: Abstract and Applied Analysis (2013)Google Scholar
  24. 24.
    Srinivas, K., Rani, B.K., Govrdhan, A.: Applications of data mining techniques in healthcare and prediction of heart attacks. Int. J. Comput. Sci. Eng. 2(2), 250–255 (2010)Google Scholar
  25. 25.
    Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.-F., Hua, L.: Data mining in healthcare and biomedicine: a survey of the literature. J. Med. Syst. 36, 2431–2448 (2012)CrossRefGoogle Scholar
  26. 26.
    Braga, P., Portela, F., Santos, M., Rua, F.: Data mining models to predict patient’s readmission in intensive care units. In: ICAART - International Conference on Agents and Artificial Intelligence, Angers, France (2014)Google Scholar
  27. 27.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Veloso, R., Portela, F., Santos, M., Sila, Á., Rua, F., Abelha, A., Machado, J.: A clustering approach for predicting readmissions in intensive medicine. Procedia Technol. 16, 1307–1316 (2014)CrossRefGoogle Scholar
  29. 29.
    Beta, J., Akolekar, R., Ventura, W., Syngelaki, A., Nicolaides, K.: Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11–13 weeks. Prenat. Diagn. 31(1), 75–83 (2011)CrossRefGoogle Scholar
  30. 30.
    Brandão, A., Pereira, E., Portela, F., Santos, M., Abelha, A., Machado, J.: Managing voluntary interruption of pregnancy using data mining. Procedia Technol. 16, 1297–1306 (2014)CrossRefGoogle Scholar
  31. 31.
    Pereira, S., Portela, F., Santos, M., Abelha, A., Machado, J.: Clustering-based approach for categorizing pregnant in obstetrics and maternity care. In: C3S2E, Yokohoma, Japan, pp. 1–5 (2015)Google Scholar
  32. 32.
    Shafique, U., Qaiser, H.: A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 12(1), 217–222 (2014)Google Scholar
  33. 33.
    Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5(4), 13–22 (2000)Google Scholar
  34. 34.
    Pereira, E., Brandão, A., Portela, F., Santos, M., Machado, J., Abelha, A.: Business intelligence in maternity care. In: IDEAS - International Database Engineering and Applications Symposium, Portugal (2014)Google Scholar
  35. 35.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and Intelligent Decision Support in Intensive Medicine – The Complete Picture. In: Bursa, M., Khuri, S., Renda, M. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sónia Pereira
    • 1
  • Filipe Portela
    • 1
    • 2
    Email author
  • Manuel F. Santos
    • 1
  • José Machado
    • 1
  • António Abelha
    • 1
  1. 1.Algoritmi CentreUniversity of MinhoBragaPortugal
  2. 2.ESEIGPorto PolytechniquePortoPortugal

Personalised recommendations