International Conference on Cryptography and Information Security in the Balkans

Cryptography and Information Security in the Balkans pp 112-133 | Cite as

Key-Policy Attribute-Based Encryption for General Boolean Circuits from Secret Sharing and Multi-linear Maps

  • Constantin Cătălin Drăgan
  • Ferucio Laurenţiu Ţiplea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9540)

Abstract

We propose a Key-policy Attribute-based Encryption (KP-ABE) scheme for general Boolean circuits, based on secret sharing and on a very particular and simple form of leveled multi-linear maps, called chained multi-linear maps. The number of decryption key components is substantially reduced in comparison with the scheme in [7], and the size of the multi-linear map (in terms of bilinear map components) is less than the Boolean circuit depth, while it is quadratic in the Boolean circuit depth for the scheme in [7]. Moreover, the multiplication depth of the chained multi-linear map in our scheme can be significantly less than the multiplication depth of the leveled multi-linear map in the scheme in [7]. Selective security of the proposed scheme in the standard model is proved, under the decisional multi-linear Diffie-Hellman assumption.

Keywords

Attribute-based encryption Multi-linear map Boolean circuit 

References

  1. 1.
    Bellare, M., Hoang, VT., Rogaway, P.: Foundations of garbled circuits. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS 2012, pp. 784–796. ACM, New York, USA (2012)Google Scholar
  2. 2.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE Computer Society (2007)Google Scholar
  3. 3.
    Boneh, D., Nikolaenko, V., Halevi, S., Vaikuntanathan, V., Vinayagamurthy, D., Gentry, C., Gorbunov, S., Segev, G.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. Cryptology ePrint Archive, Report 2015/162 (2015). (Accepted at CRYPTO 2015)Google Scholar
  5. 5.
    Drăgan, C.C., Ţiplea, F.L.: Key-policy attribute-based encryption for boolean circuits from bilinear maps. In: Ors, B., Preneel, B. (eds.) BalkanCryptSec 2014. LNCS, vol. 9024, pp. 175–193. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Gentry, C., Halevi, S., Garg, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Waters, B., Garg, S., Gentry, C., Halevi, S., Sahai, A.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds) STOC, pp. 545–554. ACM (2013)Google Scholar
  9. 9.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  10. 10.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: ACM Conference on Computer and Communications Security, pp. 195–203. ACM (2007)Google Scholar
  11. 11.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Shamir, Adi: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, David (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  13. 13.
    Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Chapman and Hall/CRC, Boca Raton (2005)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Constantin Cătălin Drăgan
    • 1
  • Ferucio Laurenţiu Ţiplea
    • 2
  1. 1.CNRS, LORIANancyFrance
  2. 2.Department of Computer ScienceAlexandru Ioan Cuza University of IaşiIaşiRomania

Personalised recommendations