DNS of the Turbulent Flow Evolving in a Plane Channel from the Entry to the Fully Developed State

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 165)

Abstract

Direct numerical simulation of the turbulent flow spatially developing in a plane channel is performed. The channel is long enough for the turbulence to achieve the statistically invariant state in space and time. Spatial evolution of statistical quantities and Reynolds stress budgets are calculated. Results are compared to the canonical flows consisting of the zero-pressure gradient turbulent boundary layer and of the periodical channel flow.

References

  1. 1.
    Buffat, M., Le Penven, L., Cadiou, A.: An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput. Fluids 42, 62–72 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Durst, F., Ray, S., Ünsal, B., Bayoumi, O.A.: The development lengths of laminar pipe and channel flows. J. Fluids Eng. 127, 1154–1160 (2005)CrossRefGoogle Scholar
  3. 3.
    Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to \({R}e_{\tau }= 2003\). Phys. Fluids 18, 011702 (2006)Google Scholar
  4. 4.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATHGoogle Scholar
  5. 5.
    Le Penven, L.: Une décomposition orthogonale des champs de vecteurs appliqué á létude de la transition turbulente en canal plan. HDR report, Université de Lyon (2013)Google Scholar
  6. 6.
    Li, Q., Brethouwer, G., Johansson, A.V., Henningson, D.S., Schlatter, P.: Simulations of spatially evolving turbulent boundary layers up to \({R}e_\theta =4300\). Int. J. Heat Fluid Flow 31, 251–261 (2010)CrossRefGoogle Scholar
  7. 7.
    Lien, K., Monty, J.P., Chong, M.S., Ooi, A.: The entrance length for fully developed turbulent channel flow. In: 5th Australasian Fluid Mechanics Conference (2004)Google Scholar
  8. 8.
    Montagnier, J., Cadiou, A., Buffat, M., Le Penven, L.: Towards petascale simulation for transition analysis in wall bounded flow. Int. J. Numer. Methods. Fluids 72(7), 709–723 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I., Chong, M.S.: A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431–442 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to \({R}e_{\tau }=590\). Phys. Fluids 11(4), 943–945 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Spalart, Ph.R.: Direct simulation of a turbulent boundary layer up to \({R}_{\theta } = 1410\). J. Fluid Mech. 187, 61–98 (1988)Google Scholar
  12. 12.
    White, F.M.: Fluid Mechanics, 7th edn. McGraw-Hill, New York (2010)Google Scholar
  13. 13.
    Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630(1), 5–41 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Capuano
    • 1
  • A. Cadiou
    • 1
  • M. Buffat
    • 1
  • L. Le Penven
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’Acoustique, École Centrale de LyonINSA de Lyon, CNRS, Université de LyonÉcullyFrance

Personalised recommendations