Skip to main content

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

The concept of aromaticity is elusive; it is not directly observable. Somewhat surprisingly, given the fuzzy character of this concept, there exist a number of very simple mathematical rules that can account for the aromaticity of a large number of organic and inorganic molecules. Among them we can mention Hückel’s, Baird’s, Wade-Mingos’, and Hirsch’s rules. In this chapter we summarize recent advances carried out in our group in the study of these aromaticity rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ground-state minimal energy structure of COT is a non-aromatic and non-planar species that is not so interesting from Baird's rule perspective. For this reason, we have chosen the planar D 4h COT, which is not an energy minimum but is a stationary point of the potential energy surface with bond-length alternation and well-known antiaromatic character.

  2. 2.

    B3LYP also includes some electron correlation effects in the calculation of the energy but it is a well-documented fact that the use of Kohn-Sham wavefunction to calculate the electron delocalization indices provides results close to the Hartree-Fock ones and, therefore, they do not include electron correlation [45].

References

  1. Li X, Kuznetsov AE, Zhang H-F, Boldyrev A, Wang L-S (2001) Observation of all-metal aromatic molecules. Science 291:859–861

    Article  CAS  Google Scholar 

  2. Zhai H-J, Averkiev BB, Zubarev DY, Wang L-S, Boldyrev AI (2007) δ Aromaticity in [Ta3O3]. Angew Chem Int Ed 46:4277–4280

    Article  CAS  Google Scholar 

  3. Boldyrev AI, Wang L-S (2005) All-metal aromaticity and antiaromaticity. Chem Rev 105:3716–3757

    Article  CAS  Google Scholar 

  4. Feixas F, Matito E, Poater J, Solà M (2013) Metalloaromaticity. WIREs Comput Mol Sci 3:105–122

    Article  CAS  Google Scholar 

  5. Tsipis CA (2005) DFT study of “all-metal” aromatic compounds. Coord Chem Rev 249:2740–2762

    Article  CAS  Google Scholar 

  6. Jiménez-Halla JOC, Matito E, Robles J, Solà M (2006) Nucleus-independent chemical shift (NICS) profiles in a series of monocyclic planar inorganic compounds. J Organomet Chem 691:4359–4366

    Article  Google Scholar 

  7. Stanger A (2006) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71:883–893

    Article  CAS  Google Scholar 

  8. Schleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, van Eikema Hommes NJR (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468

    Google Scholar 

  9. Poater J, Fradera X, Duran M, Solà M (2003) The delocalization index as an electronic aromaticity criterion. Application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  10. Matito E, Duran M, Solà M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109; Erratum íbid.(2006) 125:059901

    Article  Google Scholar 

  11. Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392

    Article  CAS  Google Scholar 

  12. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  13. Cioslowski J, Matito E, Solà M (2007) Properties of aromaticity indices based on the one-electron density matrix. J Phys Chem A 111:6521–6525

    Article  CAS  Google Scholar 

  14. Hückel E (1937) The theory of unsaturated and aromatic compounds. Z Elektrochem 43(752–788):827–849

    Google Scholar 

  15. Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948

    Article  CAS  Google Scholar 

  16. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  17. Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc D Chem Commun (15):792–793

    Google Scholar 

  18. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in icosahedral fullerenes: the 2(N + 1)2 rule. Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  19. Poater J, Solà M (2011) Open-shell spherical aromaticity: the 2 N2 + 2 N + 1 (with S = N + 1/2) rule. Chem Commun 47:11647–11649

    Article  CAS  Google Scholar 

  20. Clar E (1972) The aromatic sextet. Wiley, New York

    Google Scholar 

  21. Solà M (2013) Forty years of Clar’s aromatic pi-sextet rule. Front Chem 1:22

    Article  Google Scholar 

  22. Glidewell C, Lloyd D (1984) MNDO study of bond orders in some conjugated bi- and tri-cyclic hydrocarbons. Tetrahedron 40:4455–4472

    Article  CAS  Google Scholar 

  23. Herges R (2006) Topology in chemistry: designing Möbius molecules. Chem Rev 106:4820–4842

    Article  CAS  Google Scholar 

  24. Rzepa HS (2005) Möbius aromaticity and delocalization. Chem Rev 105:3697–3715

    Article  CAS  Google Scholar 

  25. Rappaport SM, Rzepa HS (2008) Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. J Am Chem Soc 130:7613–7619

    Article  CAS  Google Scholar 

  26. Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z Physik 70:104–186

    Article  Google Scholar 

  27. Doering WVE, Knox LH (1954) The cycloheptatrienylium (tropylium) ion. J Am Chem Soc 76: 3203–3206

    Google Scholar 

  28. Mayer I (2010) Analytical derivation of the Hückel “4n + 2 rule”. Theoret Chem Acc 125:203–206

    Article  CAS  Google Scholar 

  29. Breslow R (1968) Small antiaromatic rings. Angew Chem Int Ed Engl 7:565–570

    Article  CAS  Google Scholar 

  30. Hobey WD (1972) Free-electron molecular-orbital model of aromaticity. J Org Chem 37:1137–1141

    Article  CAS  Google Scholar 

  31. Jiao H, Schleyer PVR, Mo Y, McAllister MA, Tidwell TT (1997) Magnetic evidence for the aromaticity and antiaromaticity of charged fluorenyl, indenyl, and cyclopentadienyl systems. J Am Chem Soc 119:7075–7083

    Article  CAS  Google Scholar 

  32. Fowler PW, Steiner E, Jenneskens LW (2003) Ring-current aromaticity in triplet states of 4n π electron monocycles. Chem Phys Lett 371:719–723

    Article  CAS  Google Scholar 

  33. Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  34. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  35. Feixas F, Matito E, Solà M, Poater J (2008) Analysis of Hückel’s [4n + 2] rule through electronic delocalization measures. J Phys Chem A 112:13231–13238

    Article  CAS  Google Scholar 

  36. Feixas F, Matito E, Solà M, Poater J (2010) Patterns of π-electron delocalization in aromatic and antiaromatic organic compounds in the light of the Hückel’s 4n + 2 rule. Phys Chem Chem Phys 12:7126–7137

    Article  CAS  Google Scholar 

  37. Rosenberg M, Dahlstrand C, Kilsa K, Ottosson H (2014) Excited state aromaticity and antiaromaticity: opportunities for physical and photochemical rationalizations. Chem Rev 114:5379–5425

    Article  CAS  Google Scholar 

  38. Zhu J, Fogarty HA, Möllerstedt H, Brink M, Ottosson H (2013) Aromaticity effects on the profiles of the lowest triplet-state potential-energy surfaces for rotation about the C=C bonds of olefins with five-membered ring substituents: an example of the impact of Baird’s rule. Chem Eur J 19:10698–10707

    Google Scholar 

  39. Ottosson H, Kilså K, Chajara K, Piqueras MC, Crespo R, Kato H, Muthas D (2007) Scope and limitations of the Baird’s theory on triplet state aromaticity: application to the tuning of singlet-triplet energy gaps in fulvene. Chem Eur J 13:6998–7005

    Article  CAS  Google Scholar 

  40. Möllerstedt H, Piqueras MC, Crespo R, Ottosson H (2004) Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? J Am Chem Soc 126:13938–13939

    Article  Google Scholar 

  41. Soncini A, Fowler PW (2008) Ring-current aromaticity in open-shell systems. Chem Phys Lett 450:431–436

    Article  CAS  Google Scholar 

  42. Mandado M, Graña AM, Pérez-Juste I (2008) Aromaticity in spin-polarized systems: can rings be simultaneously alpha aromatic and beta antiaromatic? J Chem Phys 129:164114

    Article  Google Scholar 

  43. Karadakov PB (2008) Aromaticity and antiaromaticity in low-lying electronic states of cyclooctatetraene. J Phys Chem A 112:12707–12713

    Article  CAS  Google Scholar 

  44. Karadakov PB (2008) Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene. J Phys Chem A 112:7303–7309

    Article  CAS  Google Scholar 

  45. Matito E, Solà M, Salvador P, Duran M (2007) Electron sharing indexes at the correlated level. application to aromaticity measures. Faraday Discuss 135:325–345

    Article  CAS  Google Scholar 

  46. Chen Z, Jiao H, Hirsch A, Thiel W (2001) The 2(N + 1)2 rule for spherical aromaticity: further validation. J Mol Model 7:161–163

    CAS  Google Scholar 

  47. Chen ZF, King R (2005) Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chem Rev 105:3613–3642

    Article  CAS  Google Scholar 

  48. Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100:3339–3342

    Article  CAS  Google Scholar 

  49. Gogonea V, Schleyer PvR, Schreiner PR (1998) Consequences of triplet aromaticity in 4nπ-electron annulenes: calculation of magnetic shieldings for open-shell species. Angew Chem Int Ed 37:1945–1948

    Article  CAS  Google Scholar 

  50. Lazzeretti P (2000) Ring currents. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 36. Elsevier, Amsterdam, pp 1–88

    Google Scholar 

  51. Lazzeretti P (2004) Assessment of aromaticity via molecular response properties. Phys Chem Chem Phys 6:217–223

    Article  CAS  Google Scholar 

  52. Pelloni S, Lazzeretti P (2011) Correlation between the out-of-plane components of magnetizability and central magnetic shielding in unsaturated cyclic molecules. J Phys Chem A 115:4553–4557

    Article  CAS  Google Scholar 

  53. Pelloni S, Lazzeretti P (2013) Polygonal current model: an effective quantifier of aromaticity on the magnetic criterion. J Phys Chem A 117:9083–9092

    Article  CAS  Google Scholar 

  54. Pelloni S, Monaco G, Lazzeretti P, Zanasi R (2011) Beyond NICS: estimation of the magnetotropicity of inorganic unsaturated planar rings. Phys Chem Chem Phys 13:20666–20672

    Article  CAS  Google Scholar 

  55. Feixas F, Jiménez-Halla JOC, Matito E, Poater J, Solà M (2007) Is the aromaticity of the benzene ring in the (η6-C6H6)Cr(CO)3 complex larger than that of the isolated benzene molecule? Polish J Chem 81:783–797

    CAS  Google Scholar 

  56. Osuna S, Poater J, Bofill JM, Alemany P, Solà M (2006) Are nucleus-independent (NICS) and 1N NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes? Chem Phys Lett 428:191–195

    Article  CAS  Google Scholar 

  57. Poater J, Bofill JM, Alemany P, Solà M (2006) The role of electron density and magnetic couplings on the NICS profiles of [2.2] paracyclophane and related species. J Org Chem 71:1700–1702

    Article  CAS  Google Scholar 

  58. Poater J, Solà M, Viglione RG, Zanasi R (2004) The local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. J Org Chem 69:7537–7542

    Article  CAS  Google Scholar 

  59. Lipscomb WN (1963) Boron hydrides. W. A. Benjamin, New York

    Google Scholar 

  60. Welch AJ (2013) The significance and impact of Wade’s rules. Chem Commun 49:3615–3616

    Article  CAS  Google Scholar 

  61. Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nature Phys Sci 236:99–102

    Article  CAS  Google Scholar 

  62. Poater J, Solà M, Viñas C, Teixidor F (2013) A simple link between hydrocarbon and borohydride chemistries. Chem Eur J 19:4169–4175

    Article  CAS  Google Scholar 

  63. Poater J, Solà M, Viñas C, Teixidor F (2014) π Aromaticity and three-dimensional aromaticity: two sides of the same coin? Angew Chem Int Ed 53:12191–12195

    Article  CAS  Google Scholar 

  64. Moezzi A, Bartlett RA, Power PP (1992) Reduction of a boron–nitrogen 1,3-butadiene analogue: evidence for a strong B–B π-bond. Angew Chem Int Ed Engl 31:1082–1083

    Article  Google Scholar 

  65. Moezzi A, Olmstead MM, Power PP (1992) Boron-boron double bonding in the species [B2R4]2−: synthesis and structure of [{(Et2O)Li}2{Mes2BB(Mes)Ph}], a diborane(4) dianion analog of a substituted ethylene. J Am Chem Soc 114:2715–2717

    Article  CAS  Google Scholar 

  66. Nöth H, Knizek J, Ponikwar W (1999) A boron–boron double bond in the dianions of tetra(amino)diborates. Eur J Inorg Chem 1999:1931–1937

    Article  Google Scholar 

  67. Shoji Y, Matsuo T, Hashizume D, Fueno H, Tanaka K, Tamao K (2010) A stable doubly hydrogen-bridged butterfly-shaped diborane(4) compound. J Am Chem Soc 132:8258–8260

    Article  CAS  Google Scholar 

  68. Grigsby WJ, Power P (1997) One-electron reductions of organodiborane(4) compounds: singly reduced anions and rearrangement reactions. Chem Eur J 3:368–375

    Article  CAS  Google Scholar 

  69. Grigsby WJ, Power PP (1996) Comparison of B–B π-bonding in singly reduced and neutral diborane (4) derivatives: isolation and structure of [{Li(Et2O)2}{MeO(mes)BB(mes)OMe}]. Chem Commun 19:2235–2236

    Google Scholar 

  70. Klanberg F, Eaton DR, Guggenberger LJ, Muetterties EL (1967) Chemistry of boranes. XXVIII. New polyhedral borane anions, B8H8 2−, B8H8 , and B7H7 2−. Inorg Chem 6:1271–1281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain (Projects CTQ2014-54306-P and CTQ2013-41236-ERC) and the Generalitat de Catalunya (project 2014SGR931, Xarxa de Referència en Química Teòrica i Computacional, and ICREA Academia 2014 prize for M.S.). F.F. acknowledges financial support of the Beatriu de Pinós programme from AGAUR for the postdoctoral grants BP_A_00339 and BP_A2_00022. The EU under the Marie Curie Career Integration grant PCI09-GA-2011-294240 (E.M.) and the FEDER grant UNGI10-4E-801 (European Fund for Regional Development) have also funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Solà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feixas, F., Matito, E., Poater, J., Solà, M. (2016). Rules of Aromaticity. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_12

Download citation

Publish with us

Policies and ethics