Advertisement

Characterization of User’s Behavior Variations for Design of Replayable Mobile Workloads

  • Shruti Patil
  • Yeseong KimEmail author
  • Kunal Korgaonkar
  • Ibrahim Awwal
  • Tajana S. Rosing
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 162)

Abstract

Mobile systems leverage heterogeneous cores to deliver a desired user experience. However, how these cores cooperate in executing interactive mobile applications in the hands of a real user is unclear, preventing more realistic studies on mobile platforms. In this paper, we study how 33 users run applications on modern smartphones over a period of a month. We analyze the usage of CPUs, GPUs and associated memory operations in real user interactions, and develop microbenchmarks on an automated methodology which describes realistic and replayable test runs that statistically mimic user variations. Based on the generated test runs, we further empirically characterize memory bandwidth and power consumption of CPUs and GPUs to show the impact of user variations in the system, and identify user variation-aware optimization opportunities in actual mobile application uses.

Keywords

Mobile device User variation Heterogeneous cores GPU usage 

Notes

Acknowledgments

This work was supported in part by TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, National Science Foundation (NSF) award 1344153 and Qualcomm.

References

  1. 1.
    Arnau, J.-M., et al.: Parallel frame rendering: trading responsiveness for energy on a mobile GPU. In: PACT 2013 (2013)Google Scholar
  2. 2.
    Bogdan, P., Marculescu, R.: Workload characterization and its impact on multicore platform design. In: CODES+ISSS, pp. 231–240. ACM (2010)Google Scholar
  3. 3.
    Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: USENIXATC (2010)Google Scholar
  4. 4.
    Cho, C.-W., et al.: Performance optimization of 3D applications by opengl es library hooking in mobile devices. In: ICIS (2014)Google Scholar
  5. 5.
    Do, T.M.T., et al.: Smartphone usage in the wild: a large-scale analysis of applications and context. In: ICMI (2011)Google Scholar
  6. 6.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Willey, New York (1973)zbMATHGoogle Scholar
  7. 7.
    Falaki, H., et al.: Diversity in smartphone usage. In: MobiSys, pp. 179–194 (2010)Google Scholar
  8. 8.
    Gao, C., et al. A study of mobile device utilization. In: ISPASS, pp. 225–234 (2015)Google Scholar
  9. 9.
    Gomez, L., et al.: RERAN: Timing- and touch-sensitive record and replay for Android. In: ICSE (2013)Google Scholar
  10. 10.
    Gutierrez, A., et al.: Full-system analysis and characterization of interactive smartphone applications. In: IISWC, pp. 81–90 (2011)Google Scholar
  11. 11.
    Huang, Y., et al.: Moby: a mobile benchmark suite for architectural simulators. In: ISPASS (2014)Google Scholar
  12. 12.
    Kim, S., et al.: Computing energy-efficiency in the mobile GPU. In: ISOCC, pp. 219–221 (2013)Google Scholar
  13. 13.
    Ma, X., et al.: Characterizing the performance and power consumption of 3D mobile games. In: Computer (2013)Google Scholar
  14. 14.
    Mochocki, B., et al.: Signature-based workload estimation for mobile 3D graphics. In: DAC (2006)Google Scholar
  15. 15.
    Pandiyan, D., et al.: Performance, energy characterizations and architectural implications of an emerging mobile platform benchmark suite. In: IISWC 2013 (2013)Google Scholar
  16. 16.
    Park,J.-G., et al.: Quality-aware mobile graphics workload characterization for energy-efficient DVFS design. In: ESTIMedia (2014)Google Scholar
  17. 17.
    Pathak, A., et al.: Where is the energy spent inside my app?: fine grained energyaccounting on smartphones with eprof. In: EuroSys, pp. 29–42 (2012)Google Scholar
  18. 18.
    Pathania, A., et al.: Integrated CPU-GPU power management for 3D mobile games. In: DAC (2014)Google Scholar
  19. 19.
    Peters, J.F.: Topology of digital images. In: Peters, J.F. (ed.) ISRL, vol. 63, pp. 1–76. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Shepard, C., et al.: Livelab: measuring wireless networks and smartphone users in the field. SIGMETRICS Perform. Eval. Rev. 38(3), 15–20 (2011)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Trestian, I., et al.: Measuring serendipity: connecting people, locations and interestsin a mobile 3G network. In: IMC 2009 (2009)Google Scholar
  23. 23.
    Wang, G., et al.: Accelerating computer vision algorithms using opencl framework on the mobile GPU - a case study. In: ICASSP, pp. 2629–2633 (2013)Google Scholar
  24. 24.
    Wang, R., et al.: Architectural characterization and analysis of high-end mobile client workloads. In: ICEAC (2013)Google Scholar
  25. 25.
    Xu, Q., et al.: Identifying diverse usage behaviors of smartphone apps. In: IMC, pp. 329–344 (2011)Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015

Authors and Affiliations

  • Shruti Patil
    • 1
  • Yeseong Kim
    • 1
    Email author
  • Kunal Korgaonkar
    • 1
  • Ibrahim Awwal
    • 1
  • Tajana S. Rosing
    • 1
  1. 1.University of California San DiegoSan DiegoUSA

Personalised recommendations