Advertisement

Treeline Responsiveness to Climate Warming: Insights from a Krummholz Treeline in Rolwaling Himal, Nepal

  • Niels Schwab
  • Udo Schickhoff
  • Michael Müller
  • Lars Gerlitz
  • Birgit Bürzle
  • Jürgen Böhner
  • Ram Prasad Chaudhary
  • Thomas Scholten
Chapter

Abstract

At a global scale, the elevational position of natural upper treelines is determined by low temperatures during growing season. Thus, climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. Himalayan treeline ecotones show considerable differences in altitudinal position as well as in physiognomy and species composition. To assess the sensitivity of a near-natural treeline to climate warming at local scale, we analysed the relations between changes of growth parameters and temperature gradients along the elevational gradient in the treeline ecotone in Rolwaling valley, Nepal, by a multispecies approach. We observed species-specific transition patterns (diameter at breast height, height, tree and recruit densities) and varying degrees of abruptness of these transitions across the treeline ecotone resulting in a complex stand structure. Soil temperatures are associated with physiognomic transitions, treeline position and spatial regeneration patterns. In conclusion, treeline tree species have the potential to migrate upslope in future. Upslope migration, however, is controlled by a dense krummholz belt of Rhododendron campanulatum. Currently, the treeline is rather stable; however we found a prolific regeneration as well as signs of stand densification. Given the spatial heterogeneity of Himalayan treeline ecotones, further studies are needed to fully understand the complex conditions for the establishment and development of tree seedlings and the responsiveness of Himalayan treeline ecotones to climate change.

Keywords

Density–diameter curve Regeneration Soil temperature Species composition Treeline dynamics Abies spectabilis Betula utilis Rhododendron campanulatum Sorbus microphylla 

Notes

Acknowledgements

We are grateful to Ram Bahadur, Bijay Raj Subedi, Simon Drollinger, Helge Heyken, Nina Kiese, Madan K. Suwal, Hanna Wanli and Ronja Wedegärtner who helped us during field work and to Julika Hellmold for suggestions on an earlier draft. We acknowledge Chandra Subedi for great support in logistics and administrative issues. B. Bürzle was funded by Studienstiftung des deutschen Volkes. We are indebted to the German Research Foundation (DFG SCHI 436/14-1, SCHO 739/14-1, BO 1333/4-1), to Nepalese authorities for research permits and to the community in Rolwaling for the assistance in fieldwork, willingness to cooperate and hospitality.

References

  1. Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209. doi: 10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2 CrossRefGoogle Scholar
  2. Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288. doi: 10.1111/j.1365-2745.2008.01429.x CrossRefGoogle Scholar
  3. Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472. doi: 10.1111/j.1466-8238.2009.00464.x CrossRefGoogle Scholar
  4. Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J Biogeogr 37:1938–1950. doi: 10.1111/j.1365-2699.2010.02348.x Google Scholar
  5. Baumgartner R (2015) Farewell to yak and yeti? The Rolwaling Sherpas facing a globalised world. Vajra Books, KathmanduGoogle Scholar
  6. Bernoulli M, Körner C (1999) Dry matter allocation in treeline trees. Phyton (Austria) 39:7–12Google Scholar
  7. Bhusal NP (2012) Buffer zone management system in protected areas of Nepal. Third Pole J Geogr Educ 11–12:34–44. doi: 10.3126/ttp.v11i0.11558 Google Scholar
  8. Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548. doi: 10.1002/joc.1920 Google Scholar
  9. Bolli JC, Rigling A, Bugmann H (2007) The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva Fenn 41:55–70CrossRefGoogle Scholar
  10. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200. doi: 10.1023/B:CLIM.0000018507.71343.46 CrossRefGoogle Scholar
  11. Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570. doi: 10.1007/s11629-015-3454-5 CrossRefGoogle Scholar
  12. Cieraad E, McGlone MS (2014) Thermal environment of New Zealand’s gradual and abrupt treeline ecotones. N Z J Ecol 38:12–25Google Scholar
  13. Crawford RMM (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417. doi: 10.1046/j.1365-2699.2003.00839.x CrossRefGoogle Scholar
  15. Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res Atmos 111:D19110. doi: 10.1029/2006JD007084 CrossRefGoogle Scholar
  16. Durak T, Żywiec M, Kapusta P, Holeksa J (2015) Impact of land use and climate changes on expansion of woody species on subalpine meadows in the eastern Carpathians. For Ecol Manag 339:127–135. doi: 10.1016/j.foreco.2014.12.014 CrossRefGoogle Scholar
  17. Dutta PK, Dutta BK, Das AK, Sundriyal RC (2014) Alpine timberline research gap in Himalaya: a literature review. Indian For 140:419–427Google Scholar
  18. Elliott GP (2011) Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20:46–57. doi: 10.1111/j.1466-8238.2010.00588.x CrossRefGoogle Scholar
  19. Elliott G (2012) The role of thresholds and fine-scale processes in driving upper treeline dynamics in the Bighorn Mountains, Wyoming. Phys Geogr 33:129–145. doi: 10.2747/0272-3646.33.2.129 CrossRefGoogle Scholar
  20. Gaire N, Dhakal Y, Lekhak H, Bhuju D, Shah S (2010) Vegetation dynamics in treeline ecotone of Langtang National Park, Central Nepal. Nepal J Sci Technol 11:107–114. doi: 10.3126/njst.v11i0.4132 Google Scholar
  21. Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relation to climate change at the treeline ecotone in Langtang National Park. Nepal J Sci Technol 12:220–229. doi: 10.3126/njst.v12i0.6506 Google Scholar
  22. Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290. doi: 10.5194/cp-10-1277-2014 CrossRefGoogle Scholar
  23. Gallenmüller F, Bogenrieder A, Speck T (1999) Biomechanische und ökologische Untersuchungen an Alnus viridis (Chaix) DC. in verschiedenen Höhenlagen der Schweizer Alpen. Ber. Eidgenöss. Forsch.anst. Wald Schnee Landsch. 347. Publikationen WSL, BirmensdorfGoogle Scholar
  24. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi: 10.1111/j.1654-1103.2007.tb02571.x CrossRefGoogle Scholar
  25. Gehrig-Fasel J, Guisan A, Zimmermann NE (2008) Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Model 213:345–355. doi: 10.1016/j.ecolmodel.2008.01.003 CrossRefGoogle Scholar
  26. Gerlitz L, Bechtel B, Böhner J, Bobrowski B, Bürzle B, Müller M, Scholten T, Schickhoff U, Schwab N, Weidinger J (2016) Analytic comparison of temperature lapse rates and precipitation gradients in a Himalayan treeline environment – Implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 49–64Google Scholar
  27. Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246. doi: 10.3354/cr01193 CrossRefGoogle Scholar
  28. Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol 162:157–168. doi: 10.1023/A:1020385320738 CrossRefGoogle Scholar
  29. Ghimire B, Lekhak HD (2007) Regeneration of Abies spectabilis (D. Don) Mirb. in subalpine forest of Upper Manang, north-central Nepal. In: Chaudhary RP, Aase TH, Vetaas OR, Subedi BP (eds) Local effects of global changes in the Himalayas: Manang, Nepal. Tribhuvan University/Nepal and University of Bergen, Norway, Kathmandu, pp 139–149Google Scholar
  30. Ghimire B, Mainali KP, Lekhak HD, Chaudhary RP, Ghimeray AK (2010) Regeneration of Pinus wallichiana AB Jackson in a trans-Himalayan dry valley of north-central Nepal. Himal J Sci 6:19–26. doi: 10.3126/hjs.v6i8.1798 Google Scholar
  31. Grigor’ev AA, Moiseev PA, Nagimov ZY (2013) Dynamics of the timberline in high mountain areas of the nether-polar Urals under the influence of current climate change. Russ J Ecol 44:312–323. doi: 10.1134/S1067413613040061 CrossRefGoogle Scholar
  32. Harsch MA, Bader MY (2011) Treeline form – a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596. doi: 10.1111/j.1466-8238.2010.00622.x CrossRefGoogle Scholar
  33. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. doi: 10.1111/j.1461-0248.2009.01355.x CrossRefGoogle Scholar
  34. Hoch G, Körner C (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66. doi: 10.1111/j.1365-2745.2008.01447.x CrossRefGoogle Scholar
  35. Hofgaard A, Dalen L, Hytteborn H (2009) Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20:1133–1144. doi: 10.1111/j.1654-1103.2009.01114.x CrossRefGoogle Scholar
  36. Holtmeier F-K (2009) Mountain timberlines. Ecology, patchiness, and dynamics. Springer, New YorkCrossRefGoogle Scholar
  37. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi: 10.1111/j.1466-822X.2005.00168.x CrossRefGoogle Scholar
  38. Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31:203–233. doi: 10.2747/0272-3646.31.3.203 CrossRefGoogle Scholar
  39. Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. Int J Climatol 33:968–978. doi: 10.1002/joc.3483 CrossRefGoogle Scholar
  40. Jalkanen R, Konocpka B (1998) Snow-packing as a potential harmful factor on Picea abies, Pinus sylvestris and Betula pubescens at high altitude in northern Finland. Eur J For Pathol 28:373–382. doi: 10.1111/j.1439-0329.1998.tb01191.x CrossRefGoogle Scholar
  41. Kessler M, Toivonen JM, Sylvester SP, Kluge J, Hertel D (2014) Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci 5:194. doi: 10.3389/fpls.2014.00194 CrossRefGoogle Scholar
  42. Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov EA, Naurzbaev MM, Moiseev PA, Rigling A (2012) 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 41:56–67. doi: 10.1111/j.1502-3885.2011.00214.x CrossRefGoogle Scholar
  43. Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, BaselCrossRefGoogle Scholar
  44. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. doi: 10.1111/j.1365-2699.2003.01043.x CrossRefGoogle Scholar
  45. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y CrossRefGoogle Scholar
  46. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695CrossRefGoogle Scholar
  47. Lv L-X, Zhang Q-B (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5:147–156. doi: 10.1093/jpe/rtr016 CrossRefGoogle Scholar
  48. Malanson G, Butler D, Fagre D, Walsh S, Tomback D, Daniels L, Resler L, Smith W, Weiss D, Peterson D, Bunn A, Hiemstra C, Liptzin D, Bourgeron P, Shen Z, Millar C (2007) Alpine treeline of Western North America: linking organism-to-landscape dynamics. Phys Geogr 28:378–396. doi: 10.2747/0272-3646.28.5.378 CrossRefGoogle Scholar
  49. Malanson GP, Resler LM, Bader MY, Holtmeier F-K, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arct Antarct Alp Res 43:167–177. doi: 10.1657/1938-4246-43.2.167 CrossRefGoogle Scholar
  50. Masuzawa T (1985) Ecological studies on the timberline of Mt. Fuji I. Structure of plant community and soil development on the timberline. Bot Mag Tokyo 98:15–28CrossRefGoogle Scholar
  51. Miehe G (1990) Langtang Himal: Flora und Vegetation als Klimazeiger und -zeugen im Himalaya. Dissertationes Botanicae 158. Cramer, BerlinGoogle Scholar
  52. Miehe G (1991) Die Vegetationskarte des Khumbu Himal (Mt. Everest-Südabdachung) 1: 50 000: Gefügemuster der Vegetation und Probleme der Kartierung (The vegetation map of the Khumbu Himal (Mt. Everest South Slope) 1: 50,000. Vegetation patterns and problems of mapping). Erdkunde 45:81–94. doi: 10.3112/erdkunde.1991.02.01 CrossRefGoogle Scholar
  53. Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Carl Troll’s “Asymmetrical zonation of the humid vegetation types of the world” of 1948 reconsidered. Erdkunde 54:34–50. doi: 10.3112/erdkunde.2000.01.03 CrossRefGoogle Scholar
  54. Miehe G, Miehe S, Böhner J, Bäumler R, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M, Jha PK, Pendry C (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: An introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, pp 385–472Google Scholar
  55. Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Progr Phys Geogr 40:135–160. doi:10.1177/0309133315615802Google Scholar
  56. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014) Vegan: community ecology package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan
  57. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  58. Penniston R, Lundberg A (2014) Forest expansion as explained by climate change and changes in land use: a study from Bergen, western Norway. Geogr Ann Ser Phys Geogr 96:579–589. doi: 10.1111/geoa.12056 Google Scholar
  59. Piermattei A, Garbarino M, Urbinati C (2014) Structural attributes, tree-ring growth and climate sensitivity of Pinus nigra Arn. at high altitude: common patterns of a possible treeline shift in the central Apennines (Italy). Dendrochronologia 32:210–219. doi: 10.1016/j.dendro.2014.05.002 CrossRefGoogle Scholar
  60. Press JR, Shrestha KK, Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London. http://www.efloras.org/flora_page.aspx?flora_id=110, updated online version accessed 21 Apr 2015Google Scholar
  61. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  62. Renaud V, Innes JL, Dobbertin M, Rebetez M (2011) Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998−2007). Theor Appl Climatol 105:119–127. doi: 10.1007/s00704-010-0361-0 CrossRefGoogle Scholar
  63. Sacherer J (1979) The high altitude ethnobotany of the Rolwaling Sherpas. Contrib Nepal Stud 6:45–64Google Scholar
  64. Schickhoff U (2002) Die Degradierung der Gebirgswälder Nordpakistans: Faktoren, Prozesse und Wirkungszusammenhänge in einem regionalen Mensch-Umwelt-System. Steiner, StuttgartGoogle Scholar
  65. Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354CrossRefGoogle Scholar
  66. Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington AC, Blumler MA, Schickhoff U (eds) The SAGE handbook of biogeography. Sage, London, pp 313–337Google Scholar
  67. Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265. doi: 10.5194/esd-6-245-2015
  68. Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Lange J, Müller M, Scholten T, Schwab N (2016) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 271–306Google Scholar
  69. Schmidt-Vogt D (1990) High altitude forests in the Jugal Himal (eastern central Nepal): forest types and human impact. Steiner, StuttgartGoogle Scholar
  70. Shi P, Wu N (2013) The timberline ecotone in the Himalayan region: an ecological review. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 108–116Google Scholar
  71. Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220. doi: 10.1111/j.1365-2435.2007.01370.x CrossRefGoogle Scholar
  72. Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2786. doi: 10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2 CrossRefGoogle Scholar
  73. Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline Birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in central Nepal. Mt Res Dev 27:259–267. doi: 10.1659/mrdd.0784 CrossRefGoogle Scholar
  74. Shrestha UB, Shrestha S, Chaudhary P, Chaudhary RP (2010) How representative is the protected areas system of Nepal? Mt Res Dev 30:282–294. doi: 10.1659/MRD-JOURNAL-D-10-00019.1 CrossRefGoogle Scholar
  75. Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741. doi: 10.1371/journal.pone.0036741 CrossRefGoogle Scholar
  76. Shrestha KB, Hofgaard A, Vandvik V (2014) Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol 8:347–358. doi: 10.1093/jpe/rtu035 CrossRefGoogle Scholar
  77. Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112CrossRefGoogle Scholar
  78. Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191. doi: 10.1146/annurev.es.22.110191.001141 CrossRefGoogle Scholar
  79. Sujakhu H, Gosai KR, Karmacharya SB (2013) Forest structure and regeneration pattern of Betula utilis D. Don in Manaslu Conservation Area, Nepal. Ecoprint Int J Ecol 20:107–113. doi: 10.3126/eco.v20i0.11472 Google Scholar
  80. Trant AJ, Hermanutz L (2014) Advancing towards novel tree lines? A multispecies approach to recent tree line dynamics in subarctic alpine Labrador, northern Canada. J Biogeogr 41:1115–1125. doi: 10.1111/jbi.12287 CrossRefGoogle Scholar
  81. Treml V, Chuman T (2015) Ecotonal dynamics of the altitudinal forest limit are affected by terrain and vegetation structure variables: an example from the Sudetes mountains in central Europe. Arct Antarct Alp Res 47:133–146. doi: 10.1657/AAAR0013-108 CrossRefGoogle Scholar
  82. Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3–A18. doi: 10.2307/1550148 Google Scholar
  83. Van Laar A, Akça A (2007) Forest mensuration. Springer, DordrechtCrossRefGoogle Scholar
  84. Walter H, Medina E (1969) Die Bodentemperatur als ausschlaggebender Faktor für die Gliederung der subalpinen und alpinen Stufe in den Anden Venezuelas (Vorläufige Mitteilung). Ber Dtsch Bot Ges 82:275–281. doi: 10.1111/j.1438-8677.1969.tb02269.x Google Scholar
  85. Wang T, Zhang Q-B, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan mountains, northwestern China. Glob Ecol Biogeogr 15:406–415. doi: 10.1111/j.1466-822X.2006.00233.x CrossRefGoogle Scholar
  86. Wang Y, Camarero JJ, Luo T, Liang E (2012) Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol Divers 5:311–321. doi: 10.1080/17550874.2012.704647 CrossRefGoogle Scholar
  87. Wang S-Y, Yoon J-H, Gillies RR, Cho C (2013) What caused the winter drought in western Nepal during recent years? J Clim 26:8241–8256. doi: 10.1175/JCLI-D-12-00800.1 CrossRefGoogle Scholar
  88. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29Google Scholar
  89. Wiegand T, Camarero JJ, Rüger N, Gutiérrez E (2006) Abrupt population changes in treeline ecotones along smooth gradients. J Ecol 94:880–892. doi: 10.1111/j.1365-2745.2006.01135.x CrossRefGoogle Scholar
  90. Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the central European Alps. Ann For Sci 66:402–402. doi: 10.1051/forest/2009023 CrossRefGoogle Scholar
  91. Wieser G, Holtmeier F-K, Smith WK (2014) Treelines in a changing global environment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, pp 221–263Google Scholar
  92. Winiger M (1981) Zur thermisch-hygrischen Gliederung des Mount Kenya (Causes and effects of the thermo-hygric differentiation of Mt. Kenya). Erdkunde 35:248–263. doi: 10.3112/erdkunde.1981.04.02 CrossRefGoogle Scholar
  93. Zurbriggen N, Hättenschwiler S, Frei ES, Hagedorn F, Bebi P (2013) Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecol 214:385–396. doi: 10.1007/s11258-013-0176-z CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Niels Schwab
    • 1
  • Udo Schickhoff
    • 1
  • Michael Müller
    • 2
  • Lars Gerlitz
    • 3
  • Birgit Bürzle
    • 1
  • Jürgen Böhner
    • 1
  • Ram Prasad Chaudhary
    • 4
  • Thomas Scholten
    • 2
  1. 1.CEN Center for Earth System Research and Sustainability, Institute of GeographyUniversity of HamburgHamburgGermany
  2. 2.Department of Geosciences, Chair of Soil Science and GeomorphologyUniversity of TübingenTübingenGermany
  3. 3.Section HydrologyGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.RECAST Research Centre for Applied Science and TechnologyTribhuvan UniversityKathmanduNepal

Personalised recommendations