Context in Robotics and Information Fusion

  • Domenico D. Bloisi
  • Daniele Nardi
  • Francesco Riccio
  • Francesco Trapani
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Robotics systems need to be robust and adaptable to multiple operational conditions, in order to be deployable in different application domains. Contextual knowledge can be used for achieving greater flexibility and robustness in tackling the main tasks of a robot, namely mission execution, adaptability to environmental conditions, and self-assessment of performance. In this chapter, we review the research work focusing on the acquisition, management, and deployment of contextual information in robotic systems. Our aim is to show that several uses of contextual knowledge (at different representational levels) have been proposed in the literature, regarding many tasks that are typically required for mobile robots. As a result of this survey, we analyze which notions and approaches are applicable to the design and implementation of architectures for information fusion. More specifically, we sketch an architectural framework which enables for an effective engineering of systems that use contextual knowledge, by including the acquisition, representation, and use of contextual information into a framework for information fusion.

Keywords

Context-awareness Autonomous robotics Context-dependent information fusion 

Notes

Acknowledgements

This work was supported by ONRG Grant N62909-14-1-N061.

References

  1. 1.
    L. Snidaro, J. García, J. Llinas, Context-based information fusion: a survey and discussion. Inf. Fusion 25, 16–31 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Calisi, A. Farinelli, L. Iocchi, D. Nardi, Multi-objective exploration and search for autonomous rescue robots. J. Field Robot. Spec. Issue Quant. Perform. Eval. Robot. Intell. Syst. 24, 763–777 (2007)Google Scholar
  3. 3.
    R.M. Turner, Context-mediated behavior for intelligent agents. Int. J. Hum Comput. Stud. 48(3), 307–330 (1998)CrossRefGoogle Scholar
  4. 4.
    E. Blasch, J. Llinas, D. Lambert, P. Valin, S. Das, C. Chee, M. Kokar, E. Shahbazian, High level information fusion developments, issues, and grand challenges: Fusion 2010 panel discussion, in 2010 13th Conference on Information Fusion (FUSION), 2010, pp. 1–8Google Scholar
  5. 5.
    R.C. Luo, M.G. Kay (eds.), Multisensor Integration and Fusion for Intelligent Machines and Systems (Ablex Publishing Corp., 1995)Google Scholar
  6. 6.
    M. Kam, X. Zhu, P. Kalata, Sensor fusion for mobile robot navigation. Proc. IEEE 85(1), 108–119 (1997)CrossRefGoogle Scholar
  7. 7.
    E. Blasch, Assembling a distributed fused information-based human-computer cognitive decision making tool. Aerosp. Electron. Syst. Mag. IEEE 15(5), 11–17 (2000)CrossRefGoogle Scholar
  8. 8.
    D. Shen, G. Chen, J.B. Cruz, E. Blasch. A game theoretic data fusion aided path planning approach for cooperative uav isr, in Aerospace Conference, 2008 IEEE, 2008, pp. 1–9Google Scholar
  9. 9.
    A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, H. Surmann, 3D Mapping with semantic knowledge, in RoboCup 2005: Robot Soccer World Cup IX, 2005, pp. 335–346Google Scholar
  10. 10.
    A. Rottmann, Ó. Martínez, M. Cyrill, S.W. Burgard, Place classification of indoor environments with mobile robots using boosting, in Proceedings of the National Conference on Artificial Intelligence (AAAI), 2005, pp. 1306–1311Google Scholar
  11. 11.
    N. Hawes, M. Klenk, K. Lockwood, G.S. Horn, J.D. Kelleher, Towards a cognitive system that can recognize spatial regions based on context, in AAAI, 2012Google Scholar
  12. 12.
    R. Triebel, P. Pfaff, W. Burgard, Multi-level surface maps for outdoor terrain mapping and loop closing, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006Google Scholar
  13. 13.
    A. Aboshosha, A. Zell, Adaptation of rescue robot behaviour in unknown terrains based on stochastic and fuzzy logic approaches, in Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS’03), vol. 3, 2003, pp. 2859–2864Google Scholar
  14. 14.
    C. Dornhege, A. Kleiner, Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. Technical Report 233, University of Freiburg, 2007Google Scholar
  15. 15.
    R. Simmons, D. Apfelbaum, A task description language for robot control, in IROS, International Conference on Intelligent Robots and Systems, vol. 3, 1998, pp. 1931–1937Google Scholar
  16. 16.
    A. Saffiotti, K. Konolige, E. Ruspini, A multivalued logic approach to integrating planning and control. Artif. Intell. 76, 481–526 (1995)CrossRefGoogle Scholar
  17. 17.
    W.H. Mou, M.F. Chang, C.K. Liao, Y.H. Hsu, S.H. Tseng, L.C. Fu, Context-aware assisted interactive robotic walker for parkinson’s disease patients, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 329–334Google Scholar
  18. 18.
    P. Newman, D. Cole, K. Ho, Outdoor SLAM using visual appearance and laser ranging, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 1180–1187Google Scholar
  19. 19.
    M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers, D. Fox, H. Grosskreutz, D. Hahnel, D. Schulz, Integrated plan-based control of autonomous service robots in human environments. IEEE Intell. Syst. 16(5), 56–65 (2001)Google Scholar
  20. 20.
    K. K. Narayanan, L. F. Posada, F. Hoffmann, T. Bertram, Scenario and context specific visual robot behavior learning, in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 1180–1185Google Scholar
  21. 21.
    Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, W. Wu, Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study. Pattern Anal. Mach. Intell. IEEE Trans. 34(1), 94–109 (2012)CrossRefGoogle Scholar
  22. 22.
    A.G. Buch, D. Kraft, J.K. Kamarainen, H.G. Petersen, N. Kruger, Pose estimation using local structure-specific shape and appearance context, in 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 2080–2087Google Scholar
  23. 23.
    G. Costante, T.A. Ciarfuglia, P. Valigi, E. Ricci, A transfer learning approach for multi-cue semantic place recognition, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 2122–2129Google Scholar
  24. 24.
    Z. Liu, D. Chen, K. M. Wurm, G. Von Wichert, Using rule-based context knowledge to model table-top scenes, in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2646–2651Google Scholar
  25. 25.
    J.E. Laird, K.R. Kinkade, S. Mohan, J.Z. Xu, Cognitive robotics using the soar cognitive architecture. Cognitive Robotics AAAI Technical Report WS-12-06. Accessed 27 July, 2012, pp. 46–54Google Scholar
  26. 26.
    S. Karapinar, S. Sariel-Talay, P. Yildiz, M. Ersen, Learning guided planning for robust task execution in cognitive robotics, in Proceedings of the AAAI-13 Workshop on Intelligent Robotic Systems, 2013, pp. 26–31Google Scholar
  27. 27.
    A. Scalmato, A. Sgorbissa, R. Zaccaria, Describing and classifying spatial and temporal contexts with owl dl in ubiquitous robotics, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 237–244Google Scholar
  28. 28.
    R.M. Turner, S. Rode, D. Gagne, Toward distributed context-mediated behavior for multiagent systems, in Modeling and Using Context (Springer, Berlin, 2013)Google Scholar
  29. 29.
    T. Witzig, J.M. Zollner, D. Pangercic, S. Osentoski, R. Jakel, R. Dillmann, Context aware shared autonomy for robotic manipulation tasks, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 5686–5693Google Scholar
  30. 30.
    D. Held, J. Levinson, S. Thrun, A probabilistic framework for car detection in images using context and scale, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 1628–1634Google Scholar
  31. 31.
    U. Kurup, C. Lebiere, A. Stentz, M. Hebert, Using expectations to drive cognitive behavior, in AAAI, 2012Google Scholar
  32. 32.
    J. Llinas, A survey and analysis of frameworks and framework issues for information fusion applications, in Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, vol. 6076, 2010, pp. 14–23Google Scholar
  33. 33.
    J. Gomez-Romero, J. Garcia, M. Kandefer, J. Llinas, J.M. Molina, M.A. Patricio, M. Prentice, S.C. Shapiro. Strategies and techniques for use and exploitation of contextual information in high-level fusion architectures, in 13th Conference on Information Fusion, 2010, pp. 1–8Google Scholar
  34. 34.
    S. Acharya, M. Kam, Evidence combination for hard and soft sensor data fusion, in 2011 Proceedings of the 14th International Conference on Information Fusion (FUSION), 2011, pp. 1–8Google Scholar
  35. 35.
    L. Snidaro, I. Visentini, J. Llinas, G.L. Foresti, Context in fusion: Some considerations in a JDL perspective, in 2013 16th International Conference on Information Fusion (FUSION), 2013, pp. 115–120Google Scholar
  36. 36.
    J. Llinas, C. Bowman, G. Rogova, A. Steinberg, F. White, Revisiting the JDL data fusion model ii, in Proceedings of the Seventh International Conference on Information Fusion (FUSION 2004), eds. by P. Svensson, J. Schubert, 2004, pp. 1218–1230Google Scholar
  37. 37.
    CEDRs TG Road Safety. Safe distance between vehicles. Technical report, Conference of European Directors of Roads (CEDR), 2010Google Scholar
  38. 38.
    M. Roser, A. Geiger, Video-based raindrop detection for improved image registration, in 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, pp. 570–577Google Scholar
  39. 39.
    S. You, R.T. Tan, R. Kawakami, K. Ikeuchi, Adherent raindrop detection and removal in video, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1035–1042Google Scholar
  40. 40.
    M.S. Duvall, Battery evaluation for plug-in hybrid electric vehicles, in Vehicle Power and Propulsion, 2005 IEEE Conference, 2005, p. 6Google Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  • Domenico D. Bloisi
    • 1
  • Daniele Nardi
    • 1
  • Francesco Riccio
    • 1
  • Francesco Trapani
    • 1
  1. 1.Department of Computer, Control, and Management EngineeringSapienza University of RomeRomeItaly

Personalised recommendations