Advertisement

Composing Constraint Automata, State-by-State

  • Sung-Shik T. Q. JongmansEmail author
  • Tobias Kappé
  • Farhad Arbab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9539)

Abstract

The grand composition of n automata may have a number of states/transitions exponential in n. When it does, it seems not unreasonable for the computation of that grand composition to require exponentially many resources (time, space, or both). Conversely, if the grand composition of n automata has a number of states/transitions only linear in n, we may reasonably expect the computation of that grand composition to also require only linearly many resources.

Recently and problematically, we saw cases of linearly-sized grand compositions whose computation required exponentially many resources. We encountered these cases in the context of Reo (a graphical language for coordinating components in component-based software), constraint automata (a general formalism for modeling systems’ behavior), and our compiler for Reo based on constraint automata. Combined with earlier research on constraint automata verification, these ingredients facilitate a correctness-by-construction approach to component-based software engineering—one of the hallmarks in Sifakis’ “rigorous system design”. To achieve that ambitious goal, however, we need to solve the previously stated problem. In this paper we present such a solution.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. MSCS 14(3), 329–366 (2004)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 169–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and verification of systems with exogenous coordination using Vereofy. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. SCP 61(2), 75–113 (2006)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)Google Scholar
  7. 7.
    Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated mapping of Reo circuits to constraint automata. In: FSEN 2005, ENTCS, vol. 159, pp. 99–115 (2006)Google Scholar
  8. 8.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation (2001)Google Scholar
  9. 9.
    Jongmans, S.S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  10. 10.
    Jongmans, S.S., Arbab, F.: Toward sequentializing overparallelized protocol code. In: ICE 2014, EPTCS, vol. 166, pp. 38–44 (2014)Google Scholar
  11. 11.
    Jongmans, S.S., Arbab, F.: Can high throughput atone for high latency in compiler-generated protocol code? In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 238–258. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Jongmans, S.S., Kappé, T., Arbab, F.: Composing constraint automata, state-by-state (Technical report). Technical report FM-1506, CWI (2015)Google Scholar
  13. 13.
    Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal verification. An industrial case study using Reo and Vereofy. In: Salaün, G., Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Pourvatan, B., Rouhy, N.: An alternative algorithm for constraint automata product. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 412–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Proença, J.: Synchronous coordination of distributed components. Ph.D. thesis, Leiden University (2011)Google Scholar
  16. 16.
    Sifakis, J.: Rigorous system design. In: PODC 2014, p. 292 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sung-Shik T. Q. Jongmans
    • 1
    • 2
    • 3
    Email author
  • Tobias Kappé
    • 4
  • Farhad Arbab
    • 3
    • 4
  1. 1.School of Computer ScienceOpen University of the NetherlandsHeerlenThe Netherlands
  2. 2.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Centrum Wiskunde and InformaticaAmsterdamThe Netherlands
  4. 4.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations