Genomic Variation in the FT Gene Family of Perennial Ryegrass (Lolium perenne)

  • E. Veeckman
  • K. Vandepoele
  • T. Asp
  • I. Roldán-Ruiz
  • T. RuttinkEmail author
Conference paper


The timing of flowering is of prime importance for several agronomic traits, and its genetic control is therefore of great interest to breeders. Several signaling pathways converge on FLOWERING LOCUS T (FT) gene family members, which act as central regulators of flowering, branching and seed dormancy. We identified the complete FT gene family in the Lolium perenne genome and performed phylogenetic analysis to delineate functional clades and to identify putative functionally redundant paralogs. Five FT genes of L. perenne were selected for targeted resequencing in a genepool of 746 accessions to describe genetic diversity in wild accessions, commercial cultivars and breeding material.


Gene family Flowering time FLOWERING LOCUS T TERMINAL FLOWER 1 Perennial ryegrass (Lolium perenne



KV acknowledges the Multidisciplinary Research Partnership “Bioinformatics: from nucleotides to networks” Project (no 01MR0310W) of Ghent University


  1. Ahn JH, Miller D, Winter VJ, et al (2006) A Divergent External Loop Confers Antagonistic Activity on Floral Regulators FT and TFL1. EMBO 25(3):605–14. doi: 10.1038/sj.emboj.7600950
  2. Byrne SL, Nagy I, Pfeifer M et al (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84(4):816–26. doi:  10.1111/tpj.13037
  3. Cantarel BL, Korf I, Robb SMC, et al (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–96. doi:  10.1101/gr.6743907 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61:579–590. doi:  10.1007/s00239-004-0179-4 CrossRefPubMedGoogle Scholar
  5. Danilevskaya ON, Meng X, Hou Z, et al (2008) A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize. Plant Physiol 146(1): 250–64. doi: 10.1104/pp.107.109538
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–7. doi:  10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Faure S, Higgins J, Turner A, Laurie D a. (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609. doi:  10.1534/genetics.106.069500
  8. Fiil A, Lenk I, Petersen K, et al (2011) Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Sci 180:228–237. doi:  10.1016/j.plantsci.2010.08.015 CrossRefPubMedGoogle Scholar
  9. Guindon S, Dufayard J-F, Lefort V, et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–21. doi:  10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  10. Ho WWH, Weigel D (2014) Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell 26 (2): 552–64. doi: 10.1105/tpc.113.115220
  11. Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528. doi:  10.1104/pp.125.3.1517 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jensen CS, Salchert K, Gao C, et al (2004) Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol Breed 13:37–48. doi:  10.1023/B:MOLB.0000012327.47625.23 CrossRefGoogle Scholar
  13. King RW, Moritz T, Evans LT, et al (2006) Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol 141:498–507. doi:  10.1104/pp.106.076760 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–60. doi:  10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  15. McKenna A, Hanna M, Banks E, et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–303. doi:  10.1101/gr.107524.110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Proost S, Van Bel M, Vaneechoutte D, et al (2014) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res 1–8. doi:  10.1093/nar/gku986
  17. Ruttink T, Haegeman A, van Parijs F, et al (2015) Genetic diversity in candidate genes for developmental traits and cell wall characteristics in perennial ryegrass (Lolium perenne). Budak Spangenb. Proc. 8th Int. Symp. Mol. Breed. Forage Turf.Google Scholar
  18. Skøt L, Sanderson R, Thomas A, et al (2011) Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155:1013–22. doi:  10.1104/pp.110.169870 CrossRefPubMedGoogle Scholar
  19. Yoo SY, Kardailsky I, Lee JS, et al (2004) Acceleration of Flowering by Overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells 17:95–101PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • E. Veeckman
    • 1
  • K. Vandepoele
    • 2
    • 3
  • T. Asp
    • 4
  • I. Roldán-Ruiz
    • 1
  • T. Ruttink
    • 1
    Email author
  1. 1.Plant Sciences UnitInstitute for Agricultural and Fisheries Research (ILVO), Growth and DevelopmentMelleBelgium
  2. 2.Department of Plant Systems BiologyVIBGhentBelgium
  3. 3.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  4. 4.Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Research Centre FlakkebjergAarhus UniversitySlagelseDenmark

Personalised recommendations