Comparative Studies on Optical Biosensors for Detection of Bio-Toxins

  • Alexei NabokEmail author
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)


A number of optical bio-sensing methods were reviewed with their principles and main characteristics outlined. The advantages and disadvantages of optical methods were discussed in a view of their application in detection of bio-toxins. A case study presented the comparative analysis of results in detection of mycotoxins obtained with the method of total internal reflection ellipsometry. The future prospects of optical biosensing technologies were discussed with the main focus on development of portable and highly sensitive biosensors suitable for in-field analysis.


Optical biosensors SPR Ellipsometry Interferometry Planar waveguides Mycotoxins 



This work was financially supported by NATO project, SPS(NUKR.SFPP 984637).


  1. 1.
    Lequin R M (2005) Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin Chem 51(12):2415–2418CrossRefGoogle Scholar
  2. 2.
    Rao Y J (1999) Recent progress in applications in fibre Bragg grating sensors. Opt Lasers Eng 31:297–324CrossRefGoogle Scholar
  3. 3.
    James S W, Tatam R P (2003) Optical fibre long-period grating sensors: characteristics and application. Meas Sci Technol 14:R49–R61ADSCrossRefGoogle Scholar
  4. 4.
    Nabok A (2005) Organic and inorganic nanostructures. Artech House, BostonGoogle Scholar
  5. 5.
    Brockman J M, Nelson B P, Corn R M (2000) Surface plasmon imaging of ultrathin organic films. Ann Rev Phys Chem 51:41–63ADSCrossRefGoogle Scholar
  6. 6.
    Azzam R M A, Bashara N M (1992) Ellipsometry and polarized light. North Holland, AmsterdamGoogle Scholar
  7. 7.
    Westphal P, Bornmann A (2002) Biomolecular detection by surface plasmon enhanced ellipsometry. Sens Actuators B 84:278–282CrossRefGoogle Scholar
  8. 8.
    Arwin H, Poksinski M, Johansen K (2004) Total internal reflection ellipsometry: principles and applications. Appl Opt 43:3028–3036ADSCrossRefGoogle Scholar
  9. 9.
    Nabok A, Tsargorodskaya A, Hassan A K, Starodub N F (2005) Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Appl Surf Sci 246(4):381–386ADSCrossRefGoogle Scholar
  10. 10.
    Nabok A, Tsargorodskaya A, Holloway A, Starodub N F, Gojster O (2007) Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosens Bioelectron 22(6):885–890CrossRefGoogle Scholar
  11. 11.
    Nabok A, Tsargorodskaya A (2008) The method of total internal reflection ellipsometry for thin film characterisation and sensing. Thin Solid Films 516(24):8993–9001ADSCrossRefGoogle Scholar
  12. 12.
    Nabok A, Tsargorodskaya A, Mustafa M K, Szekacs I, Starodub N F, Szekacs A (2011) Detection of low molecular weight toxins using optical phase detection techniques. Sens Actuators B Chem 154(2):232–237CrossRefGoogle Scholar
  13. 13.
    Nabok A, Mustafa M K, Tsargorodskaya A, Starodub N F (2011) Detection of aflatoxin B1 with a label free ellipsometry immunosensor. BioNanoScience 1(1):38–45CrossRefGoogle Scholar
  14. 14.
    Székács A, Adányi N, Székács I, Majer-Baranyi K, Szendrő I (2009) Optical waveguide lightmode spectroscopy immunosensors for environmental monitoring. Appl Opt 48:B151–B158ADSCrossRefGoogle Scholar
  15. 15.
    Voros J, Ramsden J J, Gsucs G, Szendro I, De Paul S M, Textor M, Spenser N D (2002) Optical grating couple biosensor. Biomaterials 23:3699–3710CrossRefGoogle Scholar
  16. 16.
    Voros J (2004) The density and refractive index od adsorbing protein layers. Biophys J 87:553–561CrossRefGoogle Scholar
  17. 17.
    Label-free immunosensor for herbicide trifluralin detection, OWLS Application notes No-002,
  18. 18.
    Label-free immunosensor for Aflatoxin B1, OWLS Application notes No-006.
  19. 19.
    Cross G, Reeves A A, Brand S, Popplewell J F, Peel L L, Swann M J, Freeman N J (2003) A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron 19(4):383–390CrossRefGoogle Scholar
  20. 20.
    Cross G, Reeves A A, Brand S, Swann M J, Peel L L, Freeman N J, Lu J R (2004) The metrics of surface adsorbed small molecules on the Yung’s fringe dual-slab waveguide interferometer. J Phys D Appl Phys 37:74–80ADSCrossRefGoogle Scholar
  21. 21.
    Luff B J, Wikinson J S, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16(4):583–592ADSCrossRefGoogle Scholar
  22. 22.
    Sun Y, Fan X (2011) Optical ring resonators for biochemical and chemical sensing. Anal Bioanal Chem 399:205–211CrossRefGoogle Scholar
  23. 23.
    Misiakos K, Kakabakos S E, Petrou P S, Ruf H H (2004) A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Anal Chem 76:1366–1373CrossRefGoogle Scholar
  24. 24.
    Kitsara M, Misiakos K, Raptis I, Makarona E (2010) Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing. Opt Express 18:8193–8206ADSCrossRefGoogle Scholar
  25. 25.
    Misiakos K, Raptis I, Makarona E, Botsialas A, Salapatas A, Oikonomou P, Psarouli A, Petrou PS, Kakabakos SE, Tukkiniemi K, Sopanen M, Jobst G (2014) All silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor. Opt Express 22(22):26803–26813ADSCrossRefGoogle Scholar
  26. 26.
    Mie G (1908) Beitge zur optic trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445CrossRefzbMATHGoogle Scholar
  27. 27.
    Hong Y, Huh Y-M, Yoon D S, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection, Hindawi Publishing Co. J Nanomater 759830. doi:10.1155/2012/759830Google Scholar
  28. 28.
    Zhao J, Zhang X, Yonzon C R, Haes A J, Van Duyne R P (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):1029–1034CrossRefGoogle Scholar
  29. 29.
    Lee K-S, El-Sayed M (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, and- cup shape, and medium refractive index. J Phys Chem 109(43):20331–20338CrossRefGoogle Scholar
  30. 30.
    Vaskevich A, Rubistein I (2013) Nanoplasmonic sensors. Springer, Integrated Analytical System, pp 333–368Google Scholar
  31. 31.
    Jonsson M P, Dahlin A B, Jonsson P, Hook F (2008) Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases. J Biomater Biol Interphases 3:FD30. doi:10.1116/1.3027483Google Scholar
  32. 32.
    Tsargorodska A, El Zubir O, Darroch B, Cartron M L, Basova T, Hunter C N, Nabok A V, Leggett G J (2014) Fast, simple, combinatorial routes to the fabrication of reusable, plasmonically active gold nanostructures by interferometric lithography of self- assembled monolayers. ACS Nano 8(8):7858–7869Google Scholar
  33. 33.
    Jensen T R, Duval M L, Kelly K L, Lazarides A A, Schatz G C, Van Duyne R P (1999) Single nanosphere lithography: effect of external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103(45):9846–9853Google Scholar
  34. 34.
    Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I (2009) Morphology and refractive index sensitivity of gold island films. Chem Mater 21:5875–5885CrossRefGoogle Scholar
  35. 35.
    Gans R (1912) Ann Phys (Weinheim, Ger.) 103:9846Google Scholar
  36. 36.
    Petryaeva E, Krull U J (2011) Localized surface plasmon resonance: nanostructures, bioassays and siosensing—a review. Anal Chim Acta 706:8–24CrossRefGoogle Scholar
  37. 37.
    Larkin P J (2005) IR and Raman Spectroscopy. Jones and Bartlett Publishers Inc, BurlingtonGoogle Scholar
  38. 38.
    Aouani H, Rahmani M, Šípová H, Torres V, Hegnerová K, Beruete M, Homola J, Hong M, Navarro-Cía M, Maier S A (2013) Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies. J Phys Chem C 117:18620–18626CrossRefGoogle Scholar
  39. 39.
    Nabok A, Tsargorodskaya A, Holloway A, Starodub NF, Demchenko A (2007) Specific binding of large aggregates of amphiphilic molecules to respective antibodies. Langmuir 23(16):8485–8490CrossRefGoogle Scholar
  40. 40.
    Lishchuk S, Tsargorodskaya A, Nabok A (2008) The model of alkylphenol micelles bound to respective antibodies on the solid surface. Colloids Surf A 324:117–121CrossRefGoogle Scholar
  41. 41.
    Al-Ammar R, Nabok A, Hashim A, Smith T (2015) Microcystin-LR produced by bacterialalgae: Optical detection and purification of contaminated substances. Sens Actuators B Chem 209:1070–1076CrossRefGoogle Scholar
  42. 42.
    Starodub N F, Nabok A V, Starodub V M, Ray A K, Hassan A K (2001) Immobilisation of biocomponents for immune optical sensors. Ukrainian Bio Chem J 73:55–64Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations