International Conference on Collaborative Computing: Networking, Applications and Worksharing

Collaborative Computing: Networking, Applications, and Worksharing pp 36-46 | Cite as

Achieving Application-Level Utility Max-Min Fairness of Bandwidth Allocation in Datacenter Networks

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 163)

Abstract

Providing fair bandwidth allocation for applications is becoming increasingly compelling in cloud datacenters as different applications compete for shared datacenter network resources. Existing solutions mainly provide bandwidth guarantees for virtual machines (VMs) and achieve the fairness of VM bandwidth allocation. However, scant attention has been paid to application bandwidth guarantees for the fairness of application performance. In this paper, we introduce a rigorous definition of application-level utility max-min fairness, which guides us to develop a non-linear model to investigate the relationship between the fairness of application performance (utility) and the application bandwidth allocation. Based on Newton’s method, we further design a simple yet effective algorithm to solve this problem, and evaluate its effectiveness with extensive experiments using OpenFlow in Mininet virtual network environment. Evaluation results show that our algorithm can achieve utility max-min fair share of bandwidth allocation for applications in datacenter networks, yet with an acceptable computational overhead.

Keywords

Bandwidth allocation Max-min fairness Application utility Datacenter networking 

References

  1. 1.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. ACM Commun. 51(1), 107–113 (2008)CrossRefGoogle Scholar
  2. 2.
    Yi, X., Liu, F., Liu, J., Jin, H.: Building a network highway for big data: architecture and challenges. IEEE Netw. Mag. 28(4), 5–13 (2014)CrossRefGoogle Scholar
  3. 3.
    Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s (datacenter) network. In: Proceedings of SIGCOMM, pp. 123–137, August 2015Google Scholar
  4. 4.
    Xu, F., Liu, F., Jin, H., Vasilakos, A.V.: Managing performance overhead of virtual machines in cloud computing: a survey, state of art and future directions. Proc. IEEE 102(1), 11–31 (2014)CrossRefGoogle Scholar
  5. 5.
    Bertsekas, D.P., Gallager, R.G.: Data Network, 2nd edn. Prentice-Hall, London (1992)Google Scholar
  6. 6.
    Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: shadow price, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Guo, J., Liu, F., Tang, H., Lian, Y., Jin, H., Lui, J.: Falloc: fair network bandwidth allocation in iaas datacenters via a bargaining game approach. In: Proceedings of ICNP, pp. 1–10, October 2013Google Scholar
  8. 8.
    Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: FairCloud: sharing the network in cloud computing. In: Proceedings of SIGCOMM, pp. 187–198, August 2012Google Scholar
  9. 9.
    Lam, T., Radhakrishnan, S., Vahdat, A., Varghese, G.: Netshare: Virtualizing Data Center Networks across Services. Technical Report CS2010-0957, Department of Computer Science and Engineering, University of California, San Diego (2010)Google Scholar
  10. 10.
    Wang, X.H., Han, D.F., Sun, F.Y.: Point estimates on deformation newton’s iterations. Mathematica Numerica Sinica 1(2), 145–156 (1990)MathSciNetGoogle Scholar
  11. 11.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  12. 12.
    Shenker, S.: Fundamental design issues for the future internet. IEEE J. Sel. Areas Commun. 13(7), 1176–1187 (1995)CrossRefGoogle Scholar
  13. 13.
    Cao, Z., Zegura, E.: Utility max-min: an application-oriented allocation scheme. In: Proceedings of Infocom, pp. 793–801, April 1999Google Scholar
  14. 14.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, W., Palaniswami, M., Low, S.: Application-oriented flow control fundamentals algorithms and fairness. IEEE/ACM Trans. Netw. 14(6), 1282–1291 (2006)CrossRefGoogle Scholar
  16. 16.
    Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 41(4), 242–253 (2011)CrossRefGoogle Scholar
  17. 17.
    Shieh, A., Kandula, S., Greenberg, A., Kim, C., Saha, B.: Sharing the data center network. In: Proceedings of NSDI, pp. 309–322, March 2011Google Scholar
  18. 18.
    Guo, J., Liu, F., Huang, X., Lui, J., Hu, M., Gao, Q., Jin, H.: On efficient bandwidth allocation for traffic variability in datacenters. In: Proceedings of Infocom, pp. 1572–1580, April 2014Google Scholar
  19. 19.
    Kumar, G., Chowdhury, M., Ratnasamy, S., Stoica, I.: A case for performance-centric network allocation. In: Proceedings of HotCloud, pp. 9–9, June 2012Google Scholar
  20. 20.
    Lee, J., Turner, Y., Lee, M., Popa, L., Banerjee, S., Kang, J.M., Sharma, P.: Application-driven bandwidth guarantees in datacenters. In: Proceedings of SIGCOMM, pp. 467–478, August 2014Google Scholar
  21. 21.
    Chen, L., Feng, Y., Li, B., Li, B.: Towards performance-centric fairness in datacenter networks. In: Proceedings of Infocom, pp. 1599–1607, April 2014Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multidimensional Information Processing, Department of Computer Science and TechnologyEast China Normal UniversityShanghaiChina

Personalised recommendations