Insect Hearing pp 239-262

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 55) | Cite as

Hearing in Drosophila

Chapter

Abstract

Since the first analysis of the Drosophila courtship song in the early 1960s, the molecular and neural mechanisms underlying acoustic communication in fruit flies have attracted the interest of many researchers studying behavioral evolution, neuroethology, sensory systems, motor pattern control, acoustic information processing, and decision making in the brain. Recent studies utilizing a wide array of genetic tools have provided novel insights into the mechanisms of acoustic communication in Drosophila, from genes and cells to neural circuits and behaviors. Drosophila, in addition to the conventional model animals such as other singing insects, mammals, and birds, thus serves as an excellent model system for analyzing the neuronal and molecular mechanisms that are essential for information processing of acoustic signals. This chapter provides an overview of our current knowledge on hearing in Drosophila with an introduction to their acoustic communication, the hearing organs, and cells involved in the function and development of the auditory system and the auditory neural circuits in the brain.

Keywords

Acoustic communication Active amplification Antennal ear Antennal mechanosensory and motor center Auditory neural circuit Auditory system Courtship song Johnston’s organ Mechanotransducer channels Primary auditory center Response properties 

References

  1. Albert, J. T., Nadrowski, B., Kamikouchi, A., & Göpfert, M. C. (2006). Mechanical tracing of protein function in the Drosophila ear. Protocol Exchange. doi:10.1038/nprot.2006.364.Google Scholar
  2. Albert, J. T., Nadrowski, B., & Göpfert, M. C. (2007). Mechanical signatures of transducer gating in the Drosophila ear. Current Biology, 17(11), 1000–1006.CrossRefPubMedGoogle Scholar
  3. Allen, M. J., Godenschwege, T. A., Tanouye, M. A., & Phelan, P. (2006). Making an escape: Development and function of the Drosophila giant fibre system. Seminars in Cell & Developmental Biology, 17(1), 31–41.CrossRefGoogle Scholar
  4. Angelini, D. R., Kikuchi, M., & Jockusch, E. L. (2009). Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. Developmental Biology, 327(1), 240–251.CrossRefPubMedGoogle Scholar
  5. Bayramli, X., & Fuss, S. H. (2012). Born to run: Patterning the Drosophila olfactory system. Developmental Cell, 22(2), 240–241.CrossRefPubMedGoogle Scholar
  6. Ben-Arie, N., Hassan, B. A., Bermingham, N. A., Malicki, D. M., Armstrong, D., et al. (2000). Functional conservation of atonal and Math1 in the CNS and PNS. Development, 127(5), 1039–1048.PubMedGoogle Scholar
  7. Bennet-Clark, H. C. (1971). Acoustics of insect song. Nature, 234, 255–259.CrossRefGoogle Scholar
  8. Bennet-Clark, H. C., & Ewing, A. W. (1969). Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster. Animal Behaviour, 17(4), 755–759.CrossRefGoogle Scholar
  9. Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., Ben-Arie, N., et al. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284(5421), 1837–1841.CrossRefPubMedGoogle Scholar
  10. Boekhoff-Falk, G. (2005). Hearing in Drosophila: Development of Johnston’s organ and emerging parallels to vertebrate ear development. Developmental Dynamics, 232(3), 550–558.CrossRefPubMedGoogle Scholar
  11. Boekhoff-Falk, G., & Eberl, D. F. (2014). The Drosophila auditory system. Wiley Interdisciplinary Reviews: Developmental Biology, 3(2), 179–191.CrossRefPubMedGoogle Scholar
  12. Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401–415.PubMedGoogle Scholar
  13. Clyne, J. D., & Miesenböck, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell, 133(2), 354–363.CrossRefPubMedGoogle Scholar
  14. Cobb, M., Burnet, B., Blizard, R., & Jallon, J. M. (1989). Courtship in Drosophila sechellia: Its structure, functional aspects, and relationship to those of other members of the Drosophila melanogaster species subgroup. Journal of Insect Behavior, 2(1), 63–89.CrossRefGoogle Scholar
  15. Cowling, D. E., & Burnet, B. (1981). Courtship songs and genetic control of their acoustic charasteristics in sibling species of the Drosophila melanogaster subgroup. Animal Behaviour, 29, 924–935.CrossRefGoogle Scholar
  16. Crossley, A. S., Bennet-Clark, H. C., & Evert, H. T. (1995). Courtship song components affect male and female Drosophila differently. Animal Behavior, 50, 827–839.CrossRefGoogle Scholar
  17. Diaz-Benjumea, F. J., Cohen, B., & Cohen, S. M. (1994). Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature, 372(6502), 175–179.CrossRefPubMedGoogle Scholar
  18. Dong, P. S., Dicks, J. S., & Panganiban, G. (2002). Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development, 129(8), 1967–1974.PubMedGoogle Scholar
  19. Eberl, D. F., & Boekhoff-Falk, G. (2007). Development of Johnston’s organ in Drosophila. The International Journal of Developmental Biology, 51(6–7), 679–687.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eberl, D. F., Duyk, G. M., & Perrimon, N. (1997). A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 94(26), 14837–14842.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eberl, D. F., Hardy, R. W., & Kernan, M. J. (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. The Journal of Neuroscience, 20(16), 5981–5988.PubMedGoogle Scholar
  22. Effertz, T., Wiek, R., & Göpfert, M. C. (2011). NompC TRP channel is essential for Drosophila sound receptor function. Current Biology, 21(7), 592–597.CrossRefPubMedGoogle Scholar
  23. Ewing, A. W. (1983). Functional aspects of Drosophila courtship. Biological Reviews, 58(2), 275–292.CrossRefGoogle Scholar
  24. Ewing, A. W. (1989). Arthropod bioacoustics: Neurobiology and behaviour. New York: Comstock (Cornell University Press).Google Scholar
  25. Ewing, A. W., & Bennet-Clark, H. C. (1968). The courtship songs of Drosophila. Behaviour, 31, 288–301.CrossRefGoogle Scholar
  26. Göpfert, M. C., & Robert, D. (2001). Biomechanics: Turning the key on Drosophila audition. Nature, 411(6840), 908.Google Scholar
  27. Göpfert, M. C., & Robert, D. (2002). The mechanical basis of Drosophila audition. Journal of Experimental Biology, 205(9), 1199–1208.PubMedGoogle Scholar
  28. Göpfert, M. C., & Robert, D. (2003). Motion generation by Drosophila mechanosensory neurons. Proceedings of the National Academy of Sciences of the USA, 100(9), 5514–5519.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Göpfert, M. C., Humphris, A., Albert, J., Robert, D., & Hendrich, O. (2005). Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proceedings of the National Academy of Sciences of the USA, 102(2), 325–330.Google Scholar
  30. Greenspan, R. J., & Ferveur, J. F. (2000). Courtship in Drosophila. Annual Review of Genetics, 34, 205–232.CrossRefPubMedGoogle Scholar
  31. Hudspeth, A. J. (2008). Making an effort to listen: Mechanical amplification in the ear. Neuron, 59(4), 530–545.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hudspeth, A. J. (2014). Integrating the active process of hair cells with cochlear function. Nature Reviews Neuroscience, 15(9), 600–614.CrossRefPubMedGoogle Scholar
  33. Jarman, A. P. (2014). Development of the auditory organ (Johnston’s organ) in Drosophila. In R. Romand & I. Varela-Nieto (Eds.), Development of auditory and vestibular systems. Oxford, UK: Academic Press.Google Scholar
  34. Jarman, A. P., Grau, Y., Jan, L. Y., & Jan, Y. N. (1993). atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell, 73(7), 1307–1321.CrossRefPubMedGoogle Scholar
  35. Jonsson, T., Kravitz, E. A., & Heinrich, R. (2011). Sound production during agonistic behavior of male Drosophila melanogaster. Fly, 5(1), 29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kamikouchi, A. (2013). Auditory neuroscience in fruit flies. Neuroscience Research, 76(3), 113–118.CrossRefPubMedGoogle Scholar
  37. Kamikouchi, A., & Fiala, A. (2013). Monitoring neural activity with genetically encoded Ca2+ indicators. In H. Ogawa & K. Oka (Eds.), Methods in neuroethological research (pp. 103–114). Tokyo: Springer Japan.CrossRefGoogle Scholar
  38. Kamikouchi, A., Shimada, T., & Ito, K. (2006). Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. The Journal of Comparative Neurology, 499(3), 317–356.CrossRefPubMedGoogle Scholar
  39. Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., et al. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature, 458(7235), 165–171.CrossRefPubMedGoogle Scholar
  40. Kamikouchi, A., Albert, J. T., & Gopfert, M. C. (2010). Mechanical feedback amplification in Drosophila hearing is independent of synaptic transmission. The European Journal of Neuroscience, 31(4), 697–703.CrossRefPubMedGoogle Scholar
  41. Kazama, H. (2014). Systems neuroscience in Drosophila: Conceptual and technical advantages. Neuroscience. doi:10.1016/j.neuroscience.2014.06.035
  42. Kernan, M. J. (2007). Mechanotransduction and auditory transduction in Drosophila. Pflügers Archiv-European Journal of Physiology, 454(5), 703–720.CrossRefPubMedGoogle Scholar
  43. Lai, J. S.-Y., Lo, S.-J., Dickson, B. J., & Chiang, A.-S. (2012). Auditory circuit in the Drosophila brain. Proceedings of the National Academy of Sciences of the USA, 109(7), 2607–2612.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lehnert, B. P., Baker, A. E., Gaudry, Q., Chiang, A. S., & Wilson, R. I. (2013). Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron, 77(1), 115–128.CrossRefPubMedGoogle Scholar
  45. Martin, P., Hudspeth, A., & Jülicher, F. (2001). Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. Proceedings of the National Academy of Sciences of the USA, 98(25), 14380–14385.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Matsuo, E., & Kamikouchi, A. (2013). Neuronal encoding of sound, gravity, and wind in the fruit fly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 199(4), 253–262.CrossRefPubMedGoogle Scholar
  47. Matsuo, E., Yamada, D., Ishikawa, Y., Asai, T., Ishimoto, H., & Kamikouchi, A. (2014). Identification of novel vibration-and deflection-sensitive neuronal subgroups in Johnston’s organ of the fruit fly. Frontiers in Physiology. doi:10.3389/fphys.2014.00179.Google Scholar
  48. Matsuo, E., Seki, H., Asai, T., Morimoto, T., Miyakawa, H., Ito, K., & Kamikouchi, A. (2016). Organization of projection neurons and local neurons of the primary auditory center in the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 524(6), 1099–1164.Google Scholar
  49. Menda, G., Bar, H. Y., Arthur, B. J., Rivlin, P. K., Wyttenbach, R. A., et al. (2011). Classical conditioning through auditory stimuli in Drosophila: Methods and models. The Journal of Experimental Biology, 214(Pt 17), 2864–2870.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nadrowski, B., Martin, P., & Jülicher, F. (2004). Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proceedings of the National Academy of Sciences of the USA, 101(33), 12195–12200.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Paillette, M., Ikeda, H., & Jallon, J.-M. (1991). A new acoustic signal of the fruit-flies Drosophila simulans and D. melanogaster. Bioacoustics, 3(4), 247–254.CrossRefGoogle Scholar
  52. Riabinina, O., Dai, M., Duke, T., & Albert, J. T. (2011). Active process mediates species-specific tuning of Drosophila ears. Current Biology, 21(8), 658–664.CrossRefPubMedGoogle Scholar
  53. Ritchie, M. G., Halsey, E. J., & Gleason, J. M. (1999). Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Animal Behaviour, 58(3), 649–657.CrossRefPubMedGoogle Scholar
  54. Shorey, H. (1962). Nature of the sound produced by Drosophila melanogaster during courtship. Science, 137(3531), 677–678.CrossRefPubMedGoogle Scholar
  55. Simpson, J. H. (2009). Mapping and manipulating neural circuits in the fly brain. Advances in Genetics, 65, 79–143.CrossRefPubMedGoogle Scholar
  56. Spieth, H. T. (1974). Courtship behavior in Drosophila. Annual Review of Entomology, 19(1), 385–405.CrossRefPubMedGoogle Scholar
  57. Talyn, B. C., & Dowse, H. B. (2004). The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Animal Behaviour, 68(5), 1165–1180.CrossRefGoogle Scholar
  58. Tauber, E., & Eberl, D. F. (2003). Acoustic communication in Drosophila. Behavioural Processes, 64(2), 197–210.CrossRefGoogle Scholar
  59. Todi, S. V., Sharma, Y., & Eberl, D. F. (2004). Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microscopy Research and Technique, 63(6), 388–399.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tootoonian, S., Coen, P., Kawai, R., & Murthy, M. (2012). Neural representations of courtship song in the Drosophila brain. The Journal of Neuroscience, 32(3), 787–798.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Uga, S., & Kuwabara, M. (1965). On the fine structure of the chordotonal sensillum in antenna of Drosophila melanogaster. Journal of Electron Microscopy, 14(3), 173–181.Google Scholar
  62. Vaughan, A. G., Zhou, C., Manoli, D. S., & Baker, B. S. (2014). Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Current Biology, 24(10), 1039–1049.CrossRefPubMedGoogle Scholar
  63. von Reyn, C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., et al. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970.CrossRefGoogle Scholar
  64. von Schilcher, F. (1976). The role of auditory stimuli in the courtship of Drosophila melanogaster. Animal Behaviour, 24(1), 18–26.CrossRefGoogle Scholar
  65. Wang, V. Y., Hassan, B. A., Bellen, H. J., & Zoghbi, H. Y. (2002). Drosophila atonal fully rescues the phenotype of Math1 null mice: New functions evolve in new cellular contexts. Current Biology, 12(18), 1611–1616.CrossRefPubMedGoogle Scholar
  66. Wheeler, D. A., Fields, W. L., & Hall, J. C. (1988). Spectral analysis of Drosophila courtship songs: D. melanogaster, D. simulans, and their interspecific hybrid. Behavior Genetics, 18(6), 675–703.CrossRefPubMedGoogle Scholar
  67. Yager, D. D. (1999). Structure, development, and evolution of insect auditory systems. Microscopy Research and Technique, 47(6), 380–400.CrossRefPubMedGoogle Scholar
  68. Yoon, J., Matsuo, E., Yamada, D., Mizuno, H., Morimoto, T., et al. (2013). Selectivity and plasticity in a sound-evoked male-male interaction in Drosophila. PLoS ONE, 8(9), e74289.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yorozu, S., Wong, A., Fischer, B. J., Dankert, H., Kernan, M. J., et al. (2009). Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature, 458(7235), 201–205.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of ScienceNagoya UniversityChikusa, NagoyaJapan

Personalised recommendations