An Enzyme-Inspired Approach to Stochastic Allocation of Robotic Swarms Around Boundaries

  • Theodore P. PavlicEmail author
  • Sean Wilson
  • Ganesh P. Kumar
  • Spring Berman
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 114)


This work presents a novel control approach for allocating a robotic swarm among boundaries. It represents the first step toward developing a methodology for encounter-based swarm allocation that incorporates rigorously characterized spatial effects in the system without requiring analytical expressions for encounter rates. Our approach utilizes a macroscopic model of the swarm population dynamics to design stochastic robot control policies that result in target allocations of robots to the boundaries of regions of different types. The control policies use only local information and have provable guarantees on the collective swarm behavior. We analytically derive the relationship between the stochastic control policies and target allocations for a scenario in which circular robots avoid collisions with each other, bind to boundaries of disk-shaped regions, and command bound robots to unbind. We validate this relationship in simulation and show that it is robust to environmental changes, such as a change in the number or size of robots and disks.


Distributed robotic systems Stochastic robotics Bio-inspiration Chemical reaction networks Attachment–detachment 



This work was supported in part by the National Science Foundation (grant no. CCF-1012029).


  1. 1.
    Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009). doi: 10.1109/TRO.2009.2024997 CrossRefGoogle Scholar
  2. 2.
    Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China (2011)Google Scholar
  3. 3.
    Berman, S., Nagpal, R., Halász, Á.: Optimization of stochastic strategies for spatially inhomogeneous robot swarms: a case study in commercial pollination. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, pp 3923–3930 (2011). doi: 10.1109/IROS.2011.6094771
  4. 4.
    Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, pp. 4187–4193 (2010). doi: 10.1109/IROS.2010.5649153
  5. 5.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). doi: 10.1007/s11721-012-0075-2 CrossRefGoogle Scholar
  6. 6.
    Correll, N.: Parameter estimation and optimal control of swarm-robotic systems: a case study in distributed task allocation. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, pp 3302–3307, (2008). doi: 10.1109/ROBOT.2008.4543714
  7. 7.
    Correll, N., Martinoli, A.: Modeling and optimization of a swarm-intelligent inspection system. In: Proceedings of the Seventh International Symposium on Distributed Autonomous Robotics Systems (DARS 2004), Toulouse, France, pp. 369–378, (2004). doi: 10.1007/978-4-431-35873-2_36
  8. 8.
    Dantu, K., Berman, S., Kate, B., Nagpal, R.: A comparison of deterministic and stochastic approaches for allocating spatially dependent tasks in micro-aerial vehicle collectives. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, pp. 793–800, (2012). doi: 10.1109/IROS.2012.6386233
  9. 9.
    Diller, E., Sitti, M.: Micro-scale mobile robotics. Found. Trends Robot. 2, 143–259 (2013)CrossRefGoogle Scholar
  10. 10.
    Evans, W.C., Mermoud, G., Martinoli, A.: Comparing and modeling distributed control strategies for miniature self-assembling robots. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, pp. 1438–1445. Anchorage, AK (2010)Google Scholar
  11. 11.
    Gurarie, E.: Models and analysis of animal movements: From individual tracks to mass dispersal. Ph.D. thesis, University of Washington (2008)Google Scholar
  12. 12.
    Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008). doi: 10.1007/s11721-008-0015-3 CrossRefGoogle Scholar
  13. 13.
    Hutchinson, J.M.C., Waser, P.M.: Use, misuse and extensions of “ideal gas” models of animal encounter. Biol. Rev. 82(3), 335–359 (2007). doi: 10.1111/j.1469-185X.2007.00014.x CrossRefGoogle Scholar
  14. 14.
    Klavins, E., Burden, S., Napp, N.: Optimal rules for programmed stochastic self-assembly. In: Proceedings of Robotics: Science and Systems II, Philadelphia (2006)Google Scholar
  15. 15.
    Kushleyev, A., Kumar, V., Mellinger, D.: Towards a swarm of agile micro quadrotors. In: Proceedings of Robotics: Science and Systems VIII, Sydney, NSW, Australia (2012)Google Scholar
  16. 16.
    Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010). doi: 10.1177/0278364910375139 CrossRefGoogle Scholar
  17. 17.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int. J. Robot. Res. 23(4–5), 415–436 (2004). doi: 10.1177/0278364904042197 CrossRefGoogle Scholar
  18. 18.
    Mather, T.W., Hsieh, M.A.: Distributed robot ensemble control for deployment to multiple sites. In: Proceedings of Robotics: Science and Systems VII, Los Angeles, CA, USA (2011)Google Scholar
  19. 19.
    Matthey, L., Berman, S., Kumar, V.: Stochastic strategies for a swarm robotic assembly system. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 1953–1958. Kobe, Japan (2009)CrossRefGoogle Scholar
  20. 20.
    McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.J.: Using multi-robot systems for engineering education: teaching and outreach with large numbers of an advanced, low-cost robot. IEEE Trans. Educ. 56(1), 24–33 (2013). doi: 10.1109/TE.2012.2222646 CrossRefGoogle Scholar
  21. 21.
    Napp, N., Klavins, E.: A compositional framework for programming stochastically interacting robots. Int. J. Robot. Res. [Special Issue Stochasticity in Robot Bio-Systems Part 2] 30(6), pp. 713–729 (2011). doi: 10.1177/0278364911403018
  22. 22.
    Napp, N., Burden, S., Klavins, E.: Setpoint regulation for stochastically interacting robots. In: Proceedings of Robotics: Science and Systems V, Seattle, WA, USA (2009)Google Scholar
  23. 23.
    Odhner, L.U., Asada, H.: Stochastic recruitment control of large ensemble systems with limited feedback. J. Dyn. Syst. Meas. Control 132(4), 041008 (2010). doi: 10.1115/1.4001706 CrossRefGoogle Scholar
  24. 24.
    Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial modeling for stochastic distributed robotic systems. Int. J. Robot. Res. 30(5), 574–589 (2011). doi: 10.1177/0278364910399521 CrossRefGoogle Scholar
  25. 25.
    Robotics Virtual Organization (Robotics VO) (2013) A Roadmap for U.S. Robotics: From Internet to Robotics (2013) Edition.
  26. 26.
    Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, USA, (1999).
  27. 27.
    Wood, R.J., Finio, B., Karpelson, M., Ma, K., Pérez-Arancibia, N.O., Sreetharan, P.S., Tanaka, H., Whitney, J.P.: Progress on ‘pico’ air vehicles. Int. J. Robot. Res. 31(11), 1292–1302 (2012). doi: 10.1177/0278364912455073 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Theodore P. Pavlic
    • 1
    Email author
  • Sean Wilson
    • 2
  • Ganesh P. Kumar
    • 3
  • Spring Berman
    • 2
  1. 1.School of Computing, Informatics, and Decision Systems Engineering / School of SustainabilityArizona State UniversityTempeUSA
  2. 2.School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA
  3. 3.School for Computing, Informatics and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations