Image Segmentation Using an Evolutionary Method Based on Allostatic Mechanisms

  • Valentín Osuna-Enciso
  • Virgilio Zúñiga
  • Diego Oliva
  • Erik Cuevas
  • Humberto Sossa
Part of the Studies in Computational Intelligence book series (SCI, volume 630)


In image analysis, segmentation is considered one of the most important steps. Segmentation by searching threshold values assumes that objects in a digital image can be modeled through distinct gray level distributions. In this chapter it is proposed the use of a bio-inspired algorithm, called Allostatic Optimisation (AO), to solve the multi threshold segmentation problem. Our approach considers that an histogram can be approximated by a mixture of Cauchy functions, whose parameters are evolved by AO. The contributions of this chapter are on three fronts, by using: a Cauchy mixture to model the original histogram of digital images, the Hellinger distance as an objective function, and AO algorithm. In order to illustrate the proficiency and robustness of the proposed approach, it has been compared to the well-known Otsu method, over several standard benchmark images.


Hausdorff Distance Cauchy Distribution Hellinger Distance Matching Quality Combination Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn. Lett. 29(2), 119–125 (2008)Google Scholar
  2. 2.
    Naz, S., Majeed, H., Irshad, H.: Image segmentation using fuzzy clustering: a survey. In: 2010 6th International Conference on Emerging Technologies, pp. 181–186. IEEE (2010)Google Scholar
  3. 3.
    Janev, M., Pekar, D., Jakovljevic, N., Delic, V.: Eigenvalues driven gaussian selection in continuous speech recognition using hmms with full covariance matrices. Appl. Intell. 33(2), 107–116 (2010)CrossRefGoogle Scholar
  4. 4.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)CrossRefGoogle Scholar
  5. 5.
    Beevi, S.Z., Sathik, M.M., Senthamaraikannan, K., Yasmin, J.H.J.: A robust fuzzy clustering technique with spatial neighborhood information for effective medical image segmentation: an efficient variants of fuzzy clustering technique with spatial information for effective noisy medical image segmentation. In: 2010 Second International Conference on Computing, Communication and Networking Technologies, pp. 1–8. IEEE (2010)Google Scholar
  6. 6.
    Chitsaz, M., Seng, W.C.: A multi-agent system approach for medical image segmentation. In: 2009 International Conference on Future Computer and Communication, pp. 408–411. IEEE (2009)Google Scholar
  7. 7.
    Halim, N., Mashor, M., Abdul Nasir, A., Mokhtar, N., Rosline, H.: Nucleus segmentation technique for acute Leukemia. In: 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, pp. 192–197. IEEE (2011)Google Scholar
  8. 8.
    Mohapatra, S., Patra, D.: Automated cell nucleus segmentation and acute leukemia detection in blood microscopic images. In: 2010 International Conference on Systems in Medicine and Biology, pp. 49–54. IEEE (2010)Google Scholar
  9. 9.
    Mohapatra, S., Patra, D., Kumar, K.: Blood microscopic image segmentation using rough sets. In: 2011 International Conference on Image Information Processing, pp. 1–6. IEEE (2011)Google Scholar
  10. 10.
    Mohapatra, S., Samanta, S.S., Patra, D., Satpathi, S.: Fuzzy based blood image segmentation for automated leukemia detection. In: 2011 International Conference on Computers and Devices for Communication, pp. 1–5. IEEE (2011)Google Scholar
  11. 11.
    Nor Hazlyna, H., Mashor, M., Mokhtar, N., Aimi Salihah, A., Hassan, R., Raof, R., Osman, M.: Comparison of acute leukemia Image segmentation using HSI and RGB color space. In: 10th Internaional Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), pp. 749–752. IEEE (2010)Google Scholar
  12. 12.
    Yang, G., Chen, K., Zhou, M., Xu, Z., Chen, Y.: Study on statistics iterative thresholding segmentation based on aviation image. In: Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2007), vol. 2, pp. 187–188. IEEE (2007)Google Scholar
  13. 13.
    Li, X., Ramachandran, R., He, M., Rushing, J., Graves, S., Lyatsky, W., Germany, G.: Comparing different thresholding algorithms for segmenting auroras. In: International Conference on Information Technology: Coding And Computing 2004. Proceedings. ITCC 2004, vol. 2, pp. 594–601. IEEE (2004)Google Scholar
  14. 14.
    Li, Z., Liu, C., Liu, G., Cheng, Y., Yang, X., Zhao, C.: A novel statistical image thresholding method. AEU Int. J. Electron. Commun. 64(12), 1137–1147 (2010)CrossRefGoogle Scholar
  15. 15.
    Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013)CrossRefGoogle Scholar
  16. 16.
    Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst. Appl. 37(7), 5265–5271 (2010)CrossRefGoogle Scholar
  17. 17.
    Hammouche, K., Diaf, M., Siarry, P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 23(5), 676–688 (2010)CrossRefGoogle Scholar
  18. 18.
    Horng, M.H.: A multilevel image thresholding using the honey bee mating optimization. Appl. Math. Comput. 215(9), 3302–3310 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Sathya, P., Kayalvizhi, R.: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng. Appl. Artif. Intell. 24(4), 595–615 (2011)CrossRefGoogle Scholar
  20. 20.
    Sathya, P., Kayalvizhi, R.: Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38(12), 15549–15564 (2011)CrossRefGoogle Scholar
  21. 21.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1)Google Scholar
  22. 22.
    Al-Hussaini, E., Ateya, S.: Parametric estimation under a class of multivariate distributions. Stat. Pap. 46(3), 321–338 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, T., Zhang, P., Dai, W.S., Xie, M.: An intermediate distribution between Gaussian and Cauchy distributions. Phys. A Stat. Mech. Appl. 391(22), 5411–5421 (2012)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ateya, S., Madhagi, E.: On multivariate truncated generalized cauchy distribution. Stat. Pap. 54(3), 879–897 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Zhang, J.: A highly efficient l-estimator for the location parameter of the cauchy distribution. Comput. Stat. 25(1), 97–105 (2010)Google Scholar
  26. 26.
    Pander, T., Przybya, T.: Impulsive noise cancelation with simplified Cauchy-based p-norm filter. Signal Process. 92(9), 2187–2198 (2012)CrossRefGoogle Scholar
  27. 27.
    Gao, Q., Lu, Y., Sun, D., Sun, Z.L., Zhang, D.: Directionlet-based denoising of SAR images using a Cauchy model. Signal Process. 93(5), 1056–1063 (2013)CrossRefGoogle Scholar
  28. 28.
    Guozhong, C., Xingzhao, L.: Cauchy pdf modelling and its application to SAR image despeckling. J. Syst. Eng. Electron. 19(4), 717–721 (2008)CrossRefGoogle Scholar
  29. 29.
    Kocsor, A., Tth, L.: Application of kernel-based feature space transformations and learning methods to phoneme classification. Appl. Intell. 21(2), 129–142 (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Olsson, R.K., Petersen, K.B., Lehn-Schiøler, T.: State-space models: from the EM algorithm to a gradient approach. Neural Comput. 19(4), 1097–1111 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Park, H., Amari, S.I., Fukumizu, K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw. 13(7), 755–764 (2000)CrossRefGoogle Scholar
  32. 32.
    Park, H., Ozeki, T.: Singularity and slow convergence of the EM algorithm for gaussian mixtures. Neural Process. Lett. 29(1), 45–59 (2009)CrossRefGoogle Scholar
  33. 33.
    I Abdul-Moniem, Y.M.S.: Tl-moments and l-moments estimation for the generalized pareto distribution. Appl. Math. Sci. 3(1)Google Scholar
  34. 34.
    Reeds, J.A.: Asymptotic number of roots of cauchy location likelihood equations. Ann. Stat. 13 Google Scholar
  35. 35.
    Barnett, V.D.: Order statistics estimators of the location of the cauchy distribution. J. Am. Stat. Assoc. 61 Google Scholar
  36. 36.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, Chichester (1966)Google Scholar
  37. 37.
    De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis, Ann Arbor, MI, USA (1975)Google Scholar
  38. 38.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar
  39. 39.
    De Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part i-basic theory and applications. Universidade Estadual de Campinas, Dezembro de, Technical Report 210 (1999)Google Scholar
  40. 40.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)Google Scholar
  41. 41.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Engineering Faculty, Computer Engineering Department, Erciyes University (2005)Google Scholar
  42. 42.
    Encyclopedia of Human Body Systems. Julie McDowell, Greenwood (2011)Google Scholar
  43. 43.
    Cannon, W.: Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researchers into the Function of Emotional Excitement. Appleton, New York (1929)Google Scholar
  44. 44.
    Cannon, W.: The Wisdom of the Body. Norton (1932)Google Scholar
  45. 45.
    Gross, C.G.: Claude bernard and the constancy of the internal environment. Neuroscientist 4 Google Scholar
  46. 46.
    Fletcher, J.M.: Homeostasis as an explanatory principle in psychology. Psychol. Rev. 49(1)Google Scholar
  47. 47.
    McEwen, B.: Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology 22(2)Google Scholar
  48. 48.
    McEwen B.S., Wingfield, J.C.: The concept of allostasis in biology and biomedicine. Horm. Behav. 43(1)Google Scholar
  49. 49.
    Romero, L.M., Dickens, M.J., Cyr, N.E.: The reactive scope model a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55(3), 375–389 (2009)CrossRefGoogle Scholar
  50. 50.
    Schulkin, J.: Allostasis: a neural behavioral perspective. Horm. Behav. 43(1)Google Scholar
  51. 51.
    Sterling, P.: Allostasis: a model of predictive regulation. Physiol. Behav. 106(1)Google Scholar
  52. 52.
    Martinez-Lavin, M., Vargas, A.: Complex adaptive systems allostasis in fibromyalgia. Rheum. Dis. Clin. North Am. 35(2), 285–98 (2009)CrossRefGoogle Scholar
  53. 53.
    Karunamuni, R., Wu, J.: Minimum Hellinger distance estimation in a nonparametric mixture model. J. Stat. Plan. Infer. 139(3), 1118–1133 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Labati, R.D., Piuri, V., Scotti, F.: All-IDB: The acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing, pp. 2045–2048. IEEE (2011)Google Scholar
  55. 55.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of Eighth IEEE International Conference on Compututer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE Computer Society (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Valentín Osuna-Enciso
    • 1
  • Virgilio Zúñiga
    • 1
  • Diego Oliva
    • 2
  • Erik Cuevas
    • 3
  • Humberto Sossa
    • 4
  1. 1.Departamento de IngenieríasCUTonalá, Universidad de GuadalajaraTonaláMexico
  2. 2.Departamento de Ciencias ComputacionalesTecnológico de Monterrey, Campus GuadalajaraGuadalajaraMexico
  3. 3.Departamento de Ciencias ComputacionalesCUCEI, Universidad de GuadalajaraGuadalajaraMexico
  4. 4.Instituto Politécnico Nacional-CICMéxico D.F.Mexico

Personalised recommendations