Computationally Efficient Boundary Element Methods for High-Frequency Helmholtz Problems in Unbounded Domains

Chapter
Part of the Geosystems Mathematics book series (GSMA)

Abstract

This chapter presents the application of the boundary element method to high-frequency Helmholtz problems in unbounded domains. Based on a standard combined integral equation approach for sound-hard scattering problems we discuss the discretization, preconditioning and fast evaluation of the involved operators. As engineering problem, the propagation of high-intensity focused ultrasound fields into the human rib cage will be considered. Throughout this chapter we present code snippets using the open-source Python boundary element software BEM++ to demonstrate the implementation.

References

  1. 1.
    S. Amini and P. J. Harris. A comparison between various boundary integral formulations of the exterior acoustic problem. Computer methods in applied mechanics and engineering, 84(1):59–75, 1990.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Amini and Stephen Martin Kirkup. Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods. Journal of Computational Physics, 118(2):208–221, 1995.Google Scholar
  3. 3.
    S. Amini and N. D. Maines. Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. International Journal for Numerical Methods in Engineering, 41(5):875–898, 1998.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xavier Antoine and Marion Darbas. Alternative integral equations for the iterative solution of acoustic scattering problems. The Quarterly Journal of Mechanics and Applied Mathematics, 58(1):107–128, 2005.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Xavier Antoine and Marion Darbas. Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis, 41(01):147–167, 2007.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Bebendorf, C. Kuske, and R. Venn. Wideband nested cross approximation for Helmholtz problems. Numerische Mathematik, 130(1):1–34, Jul 2014.Google Scholar
  7. 7.
    Mario Bebendorf. Hierarchical matrices. Springer, 2008.MATHGoogle Scholar
  8. 8.
    Steffen Börm. Efficient numerical methods for non-local operators, volume 14 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2010. \(\mathcal{H}^{2}\)-matrix compression, algorithms and analysis.Google Scholar
  9. 9.
    Helmut Brakhage and Peter Werner. Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Archiv der Mathematik, 16(1):325–329, 1965.CrossRefMATHGoogle Scholar
  10. 10.
    James Bremer, Adrianna Gillman, and Per-Gunnar Martinsson. A high-order accurate accelerated direct solver for acoustic scattering from surfaces. BIT Numerical Mathematics, 55(2):367–397, Jul 2014.Google Scholar
  11. 11.
    Oscar Bruno, Tim Elling, and Catalin Turc. Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems. International Journal for Numerical Methods in Engineering, 91(10):1045–1072, 2012.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Buffa and R. Hiptmair. Regularized combined field integral equations. Numerische Mathematik, 100(1):1–19, 2005.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. J. Burton and G. F. Miller. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 323(1553):201–210, 1971.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Charles H. Cha, M. Wasif Saif, Brett H. Yamane, and Sharon M. Weber. Hepatocellular carcinoma: Current management. Current Problems in Surgery, 47(1):10–67, 2010.Google Scholar
  15. 15.
    Simon N. Chandler-Wilde, Ivan G. Graham, Stephen Langdon, and Euan A. Spence. Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica, 21:89–305, Apr 2012.Google Scholar
  16. 16.
    H Cheng, W Y Crutchfield, Z Gimbutas, L F Greengard, J F Ethridge, J Huang, V Rokhlin, N Yarvin, and J Zhao. A wideband fast multipole method for the Helmholtz equation in three dimensions. Journal of Computational Physics, 216(1):300–325, 2006.Google Scholar
  17. 17.
    Weng Cho Chew, Eric Michielssen, J. M. Song, and Jian-Ming Jin. Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.Google Scholar
  18. 18.
    David Cranston. A review of high intensity focused ultrasound in relation to the treatment of renal tumours and other malignancies. Ultrasonics Sonochemistry, 27:654–658, 2015.CrossRefGoogle Scholar
  19. 19.
    Lawrence Crum, Michael Bailey, Joo Ha Hwang, Vera Khokhlova, and Oleg Sapozhnikov. Therapeutic ultrasound: Recent trends and future perspectives. Physics Procedia, 3(1):25–34, 2010. International Congress on Ultrasonics, Santiago de Chile, January 2009.Google Scholar
  20. 20.
    Marion Darbas, Eric Darrigrand, and Yvon Lafranche. Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation. Journal of Computational Physics, 236:289–316, 2013.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Francis A. Duck. Physical properties of tissues – A comprehensive reference book. Academic, 1990.Google Scholar
  22. 22.
    B. Engquist and H. Zhao. Approximate Separability of Green’s Function for High Frequency Helmholtz Equations. Technical report.Google Scholar
  23. 23.
    Björn Engquist and Lexing Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput., 29(4):1710–1737 (electronic), 2007.Google Scholar
  24. 24.
    Leonid R. Gavrilov and Jeffrey W. Hand. High-Power Ultrasound Phased Arrays for Medical Applications. Nova, 2014.Google Scholar
  25. 25.
    P. Gélat, G. ter Haar, and N. Saffari. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Physics in Medicine and Biology, 59(12):3139–3171, 2014.CrossRefGoogle Scholar
  26. 26.
    Pierre Gélat, Gail ter Haar, and Nader Saffari. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs. Physics in Medicine and Biology, 56(17):5553–5581, 2011.CrossRefGoogle Scholar
  27. 27.
    Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dan Givoli. Computational absorbing boundaries. In Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, pages 145–166. Springer, 2008.Google Scholar
  29. 29.
    I. G. Graham, M. Löhndorf, J. M. Melenk, and E. A. Spence. When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k? BIT Numerical Mathematics, 55(1):171–214, Sep 2014.Google Scholar
  30. 30.
    Nail A Gumerov and Ramani Duraiswami. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. The Journal of the Acoustical Society of America, 125(1):191–205, 2009.Google Scholar
  31. 31.
    Han Guo, Jun Hu, and Eric Michielssen. On MLMDA/Butterfly Compressibility of Inverse Integral Operators. IEEE Antennas and Wireless Propagation Letters, 12:31–34, 2013.CrossRefGoogle Scholar
  32. 32.
    Wolfgang Hackbusch. Hierarchical matrices: Algorithms and Analysis. Springer, 2015.CrossRefMATHGoogle Scholar
  33. 33.
    R. Hiptmair. Operator Preconditioning. Computers & Mathematics with Applications, 52(5):699–706, Sep 2006.Google Scholar
  34. 34.
    Maryna Kachanovska. Hierarchical matrices and the high-frequency fast multipole method for the Helmholtz equation with decay. Technical Report 13, MPI Leipzig, 2014.Google Scholar
  35. 35.
    Robert C. Kirby. From functional analysis to iterative methods. SIAM review, 52(2):269–293, 2010.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rainer Kress. Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. The Quarterly Journal of Mechanics and Applied Mathematics, 38(2):323–341, 1985.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Marc Lenoir and Nicolas Salles. Evaluation of 3-D Singular and Nearly Singular Integrals in Galerkin BEM for Thin Layers. SIAM Journal on Scientific Computing, 34(6):A3057–A3078, Jan 2012.Google Scholar
  38. 38.
    Jun-Lun Li, Xiao-Zhou Liu, Dong Zhang, and Xiu-Fen Gong. Influence of ribs on the nonlinear sound field of therapeutic ultrasound. Ultrasound in Medicine and Biology, 33(9):1413–1420, 2007.CrossRefGoogle Scholar
  39. 39.
    Jean-Claude Nédélec. Acoustic and electromagnetic equations: integral representations for harmonic problems, volume 144. Springer Science & Business Media, 2001.CrossRefMATHGoogle Scholar
  40. 40.
    Stefan A. Sauter and Christoph Schwab. Boundary element methods, volume 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2011.Google Scholar
  41. 41.
    Wojciech Śmigaj, Timo Betcke, Simon Arridge, Joel Phillips, and Martin Schweiger. Solving boundary integral problems with BEM++. ACM Transactions on Mathematical Software (TOMS), 41(2):6, 2015.Google Scholar
  42. 42.
    O. Steinbach and W.L. Wendland. The construction of some efficient preconditioners in the boundary element method. Advances in Computational Mathematics, 9(1–2):191–216, 1998.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Olaf Steinbach. Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer Science & Business Media, 2007.Google Scholar
  44. 44.
    G. ter Haar, D. Sinnett, and I. Rivens. High intensity focused ultrasound-a surgical technique for the treatment of discrete liver tumours. Physics in Medicine and Biology, 34(11):1743–1750, 1989.CrossRefGoogle Scholar
  45. 45.
    J.-F. Aubry et al. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Journal of Therapeutic Ultrasound, 1:1–13, 2013.CrossRefGoogle Scholar
  46. 46.
    James S. Tomlinson et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. Journal of Clinical Oncology, 25(29):4575–4580, 2007.Google Scholar
  47. 47.
    Elwin van ’t Wout, Pierre Gélat, Timo Betcke, and Simon Arridge. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. The Journal of the Acoustical Society of America, 138(5):2726–2737, 2015.Google Scholar
  48. 48.
    Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li. Fast algorithms for hierarchically semiseparable matrices. Numerical Linear Algebra with Applications, 17(6):953–976, Dec 2010.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Timo Betcke
    • 1
  • Elwin van ’t Wout
    • 2
  • Pierre Gélat
    • 3
  1. 1.Department of MathematicsUniversity College LondonLondonUK
  2. 2.School of Engineering and Faculty of MathematicsPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Department of Mechanical EngineeringUniversity College LondonLondonUK

Personalised recommendations