International Workshop on Statistical Atlases and Computational Models of the Heart

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges pp 69-79 | Cite as

Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging

  • Hanne Kause
  • Aura Hernàndez-Sabaté
  • Patricia Márquez-Valle
  • Andrea Fuster
  • Luc Florack
  • Hans van Assen
  • Debora Gil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9534)

Abstract

Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.

References

  1. 1.
    Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Shapiro, E.P.: Human heart: tagging with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)CrossRefGoogle Scholar
  2. 2.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)CrossRefGoogle Scholar
  3. 3.
    Mirsky, I., Pfeffer, J.M., Pfeffer, M.A., Braunwald, E.: The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ. Res. 53, 767–778 (1983)CrossRefGoogle Scholar
  4. 4.
    Götte, M.J., van Rossum, A.C., Twisk, J.W.R., Kuijer, J.P.A., Marcus, J.M., Visser, C.A.: Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J. Am. Coll. Cardiol. 37, 808–817 (2001)CrossRefGoogle Scholar
  5. 5.
    Delhaas, T., Kotte, J., van der Toorn, A., Snoep, G., Prinzen, F.W., Arts, T.: Increase in left ventricular torsion-to-shortening ratio in children with valvular aorta stenosis. Magn. Reson. Med. 51, 135–139 (2004)CrossRefGoogle Scholar
  6. 6.
    Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Mag. Reson. Med. 42(6), 1048–1060 (1999)CrossRefGoogle Scholar
  7. 7.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  8. 8.
    Sampath, S., Derbyshire, J.A., Atalar, E., Osman, N.F., Prince, J.L.: Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse sequence. Mag. Reson. Med. 50(1), 154–163 (2003)CrossRefGoogle Scholar
  9. 9.
    Kraitchman, D.L., Sampath, S., Castillo, E., Derbyshire, J.A., Boston, R.C., Bluemke, D.A., Gerber, B.L., Prince, J.L., Osman, N.F.: Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of fastharp. Circulation 107, 2025–2030 (2003)CrossRefGoogle Scholar
  10. 10.
    Cheney, W., Kincaid, D.: Numerical Mathematics and Computing, 6th edn. Bob Pirtle, USA (2008)MATHGoogle Scholar
  11. 11.
    Waks, E., Prince, J.L., Douglas, A.S.: Cardiac motion simulator for tagged MRI. In: Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 1996) (1996). 0182Google Scholar
  12. 12.
    Márquez-Valle, P., Kause, H., Fuster, A., Hernández-Sabaté, A., Florack, L., Gil, D., van Assen, H.C.: Factors affecting optical flow performance in tagging magnetic resonance imaging. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 231–238. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Márquez-Valle, P., Gil, D., Hernàndez-Sabaté, A.: Evaluation of the capabilities of confidence measures for assessing optical flow quality. In: International Conference on Computer Vision - Workshops (2013)Google Scholar
  14. 14.
    Fisher, R.: Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh (1956)MATHGoogle Scholar
  15. 15.
    Newbold, P., Carlson, W., Thorne, B.: Statistics for Business and Economics. Pearson Education, New York (2007)Google Scholar
  16. 16.
    Van Assen, H., Florack, L., Simonis, F., Westenberg, J., Strijkers, G.: Cardiac strain and rotation analysis using multi-scale optical flow. In: Wittek, A., Nielsen, P.M.F., Miller, K. (eds.) Computational Biomechanics for Medicine V, pp. 89–100. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Márquez-Valle, P., Gil, D., Hernàndez-Sabaté, A.: A complete confidence framework for optical flow. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 124–133. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Arts, T., Hunter, W., Douglas, A., Muijtjens, A., Reneman, R.: Description of the deformation of the left ventricle by a kinematic model. J. Biomech. 25(10), 1119–1127 (1992)CrossRefGoogle Scholar
  19. 19.
    Gutberlet, M., Schwinge, K., Freyhardt, P., et al.: Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging. Eur. Radiol. 15(8), 1586–1597 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hanne Kause
    • 1
  • Aura Hernàndez-Sabaté
    • 4
  • Patricia Márquez-Valle
    • 4
  • Andrea Fuster
    • 2
    • 3
  • Luc Florack
    • 2
    • 3
  • Hans van Assen
    • 1
  • Debora Gil
    • 4
  1. 1.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Computer Vision Center and Computer Science DepartmentUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations