Automatic Detection of Myocardial Infarction Through a Global Shape Feature Based on Local Statistical Modeling

  • Mahdi TabassianEmail author
  • Martino Alessandrini
  • Peter Claes
  • Luca De Marchi
  • Dirk Vandermeulen
  • Guido Masetti
  • Jan D’hooge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9534)


This paper presents a local-to-global statistical approach for modeling the major components of left ventricular (LV) shape using its 3-D landmark representation. The rationale for dividing the LV into local areas is bi-fold: (1) to better identify abnormalities that lead to local shape remodeling and, (2) to decrease the number of shape variables by using a limited set of landmark points for an efficient statistical parametrization. Principal Component Analysis (PCA) is used for the statistical modeling of the local regions and subsets of the learned parameters that provide significant discriminatory information are taken from each local model in a feature selection stage. The selected local parameters are then concatenated to form a global representation of the LV and to train a classifier for differentiating between normal and infarcted LV shapes.


Local statistical shape modeling Principal component analysis Feature selection Myocardial abnormality detection 


  1. 1.
    Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Roux, A.V.D., et al.: Multiethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156, 871–881 (2002)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  3. 3.
    Cristianini, N., Shawe-Taylore, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)Google Scholar
  4. 4.
    Di Donato, M., Dabic, P., Castelvecchio, S., Santambrogio, C., Brankovic, J., Collarini, L., et al.: Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and new conicity index comparisons. Eur. J. Cardio-Thorac. Surg. 29, S225–S230 (2006)CrossRefGoogle Scholar
  5. 5.
    Roohi, S., Zoroofi, R.: 4D statistical shape modeling of the left ventricle in cardiac MR images. Int. J. CARS 8, 335–351 (2013)CrossRefGoogle Scholar
  6. 6.
    Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., Dinov, I.D., Fin, J.P., Hunter, P.J., Kadish, A.H., Lee, D.C., Lima, J.A., Medrano-Gracia, P., Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.A.: The Cardiac Atlas Project - an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)Google Scholar
  7. 7.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1164 (2002)CrossRefGoogle Scholar
  8. 8.
    Inza, I., Larranaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 31, 91–103 (2004)CrossRefGoogle Scholar
  9. 9.
    Jolliffe, I.T.: Principal Component Analysis. Springer, NewYork (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kadish, A.H., Bello, D., Finn, J., Bonow, R.O., Schaechter, A., Subacius, H., Albert, C., Daubert, J.P., Fonseca, C.G., Goldberger, J.J.: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial. J. Cardiovas. Electrophysiol. 20, 982–987 (2009)CrossRefGoogle Scholar
  11. 11.
    Mitchell, G.F., Lamas, G.A., Vaughan, D.E., Pfeffer, M.A.: Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J. Am. Coll. Cardiol. 19(6), 1136–1144 (1992)CrossRefGoogle Scholar
  12. 12.
    Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Rohlf, F., Slice, D.: Extensions of the procrustus method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990)CrossRefGoogle Scholar
  14. 14.
    Stegmann, M.B., Stojstrand, K., Larsen, R.: Sparse modeling of landmark and texture variability using the orthomax criterion. In: International Symposium on Medical Imaging, vol. 6144, pp. 485–496 (2006)Google Scholar
  15. 15.
    Suinesiaputra, A., Frangi, A.F., Kaandorp, T.A.M., Lamb, H.J., Bax, J.J., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)CrossRefGoogle Scholar
  16. 16.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  17. 17.
    Ye, D.H., Desjardins, B., Hamm, J., Litt, H., Pohl, K.M.: Regional manifold learning for disease classification. IEEE Trans. Med. Imaging 33(6), 1236–1247 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Cowan, B.R., Bluemke, D.A., Finn, J.P., Fonseca, C.G., Kadish, A.H., Lee, D.C., Lima, J.A.C., Suinesiaputra, A., Young, A.A., Medrano-Gracia, P.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLOS ONE 9(10), e110243 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mahdi Tabassian
    • 1
    • 2
    Email author
  • Martino Alessandrini
    • 2
  • Peter Claes
    • 3
  • Luca De Marchi
    • 1
  • Dirk Vandermeulen
    • 3
  • Guido Masetti
    • 1
  • Jan D’hooge
    • 2
  1. 1.Department of Electrical, Electronic and Information EngineeringUniversity of BolognaBolognaItaly
  2. 2.Department of Cardiovascular Sciences, Laboratory on Cardiovascular Imaging and DynamicsKU LeuvenLeuvenBelgium
  3. 3.Department of Electrical Engineering–ESAT, Medical Imaging Research Center (MIRC)KU LeuvenLeuvenBelgium

Personalised recommendations