Joint Clustering and Component Analysis of Spatio-Temporal Shape Patterns in Myocardial Infarction

  • Catarina PintoEmail author
  • Serkan Çimen
  • Ali Gooya
  • Karim Lekadir
  • Alejandro F. Frangi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9534)


The Left Ventricle (LV) undergoes remodelling after Myocardial Infarction (MI). In order to quantify the remodelling status, clinicians make use of conventional measures, not fully exploiting the available shape information. To characterize the changes in heart shape and classify heart data as normal or infarcted, we use a hierarchical generative model, which jointly clusters shape point sets from LV in End-Systolic (ED) and End-Systolic (ES) phases, and estimates the probability density function (pdf) of each cluster. We use a Variational Bayes (VB) method to infer the clusters labels, the mean models, and variation modes for the clusters. We also present the results in the supervised setting, where the labels of training data sets are given. Our classification results are evaluated in terms of sensitivity, specificity, and accuracy using 200 LV shapes provided by MICCAI 2015 STACOM LV Statistical Shape Modelling Challenge. Our method successfully classifies the data, achieving a specificity of 0.92 \(\pm \) 0.06 and a sensitivity of 0.96 \(\pm \) 0.07 for the supervised learning approach, and a specificity of 0.83 \(\pm \) 0.03 and a sensitivity of 0.97 \(\pm \) 0.01 for the unsupervised learning approach.


Left Ventricle Gaussian Mixture Model Unsupervised Learning Statistical Shape Model Unsupervised Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ardekani, S., Weiss, R.G., Lardo, A.C., George, R.T., Lima, J.A.C., Wu, K.C., Miller, M.I., Winslow, R.L., Younes, L.: Computational method for identifying and quantifying shape features of human left ventricular remodeling. Ann. Biomed. Eng. 37(6), 1043–1054 (2009)CrossRefGoogle Scholar
  2. 2.
    Bild, D., Bluemke, D., Burke, G., Detrano, R., Roux, A., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156, 871–881 (2002)CrossRefGoogle Scholar
  3. 3.
    Cohn, J.N., Ferrari, R., Sharpe, N.: Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35(3), 569–582 (2000)CrossRefGoogle Scholar
  4. 4.
    Cootes, T., Taylor, C.: Statistical models of appearance for medical image analysis and computer vision. Proc. SPIE Med. Imaging 4322, 236–248 (2001)CrossRefGoogle Scholar
  5. 5.
    Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., Young, A.A., Do Chung, J., Cowan, B.R., Young, A.A.: The cardiac atlas project–an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRefGoogle Scholar
  6. 6.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. IEEE Trans. Med. Imaging 21, 1151–1166 (2002)CrossRefGoogle Scholar
  7. 7.
    Gooya, A., Davatzikos, C., Frangi, A.F.: A bayesian approach to sparse model selection in statistical shape models. SIAM J. Imaging Sci. 8(2), 858–887 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gooya, A., Lekadir, K., Alba, X., Swift, A.J., Wild, J.M., Frangi, A.F.: Joint clustering and component analysis of correspondenceless point sets: application to cardiac statistical modeling. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 98–109. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  10. 10.
    Kadish, A., Bello, D., Finn, J., Bonow, R., Schaechter, A., et al.: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (determine) trial. J. Cardiovasc. Electrophysiol. 20, 982–987 (2009)CrossRefGoogle Scholar
  11. 11.
    Lamata, P., Lazdam, M., Ashcroft, A., Lewandowski, A.J., Leeson, P., Smith, N.: Computational mesh as a descriptor of left ventricular shape for clinical diagnosis. Comput. Cardiol. 40, 571–574 (2013)Google Scholar
  12. 12.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE PAMI 32(12), 1–14 (2010)CrossRefGoogle Scholar
  13. 13.
    Shmueli, G.: To explain or to predict? Stat. Sci. 25(3), 289–310 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Su, Y., Zhong, L., Lim, C.W., Ghista, D., Chua, T., Tan, R.S.: A geometrical approach for evaluating left ventricular remodeling in myocardial infarct patients. Comput. Methods Programs Biomed. 108(2), 500–510 (2012)CrossRefGoogle Scholar
  15. 15.
    Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Cowan, B.R., Bluemke, D.A., Finn, J.P., Fonseca, C.G., Kadish, A.H., Lee, D.C., Lima, J.A.C., Suinesiaputra, A., Young, A.A., Medrano-Gracia, P.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS ONE 9(10), e110243 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Catarina Pinto
    • 1
    Email author
  • Serkan Çimen
    • 1
  • Ali Gooya
    • 1
  • Karim Lekadir
    • 2
  • Alejandro F. Frangi
    • 1
  1. 1.Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)University of SheffieldSheffieldUK
  2. 2.CISTIB, Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations