RDF-SQ: Mixing Parallel and Sequential Computation for Top-Down OWL RL Inference

  • Jacopo UrbaniEmail author
  • Ceriel Jacobs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9501)


The size and growth rate of the Semantic Web call for querying and reasoning methods that can be applied over very large amounts of data. In this paper, we discuss how we can enrich the results of queries by performing rule-based reasoning in a top-down fashion over large RDF knowledge bases.

This paper focuses on the technical challenges involved in the top-down evaluation of the reasoning rules. First, we discuss the application of well-known algorithms in the QSQ family, and analyze their advantages and drawbacks. Then, we present a new algorithm, called RDF-SQ, which re-uses different features of the QSQ algorithms and introduces some novelties that target the execution of the OWL-RL rules.

We implemented our algorithm inside the QueryPIE prototype and tested its performance against QSQ-R, which is the most popular QSQ algorithm, and a parallel variant of it, which is the current state-of-the-art in terms of scalability. We used a large LUBM dataset with ten billion triples, and our tests show that RDF-SQ is significantly faster and more efficient than the competitors in almost all cases.


Subqueries Triple Patterns Evaluative Rules SPARQL Query Datalog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was partially funded by the COMMIT project, and by the NWO VENI project 639.021.335.


  1. 1.
    Abiteboul, S., Abrams, Z., Haar, S., Milo, T.: Diagnosis of asynchronous discrete event systems: datalog to the rescue!. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 358–367. ACM (2005)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  3. 3.
    Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to implement logic programs. In: Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 1–15. ACM (1985)Google Scholar
  4. 4.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)CrossRefGoogle Scholar
  5. 5.
    DeWitt, D., Naughton, J., Burger, J.: Nested loops revisited. In: Proceedings of the Second International Conference on Parallel and Distributed Information Systems, pp. 230–242. IEEE Comput. Soc. Press (1993)Google Scholar
  6. 6.
    Erling, O., Mikhailov, I.: Virtuoso: RDF support in a native RDBMS. In: de Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management, pp. 501–519. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Heino, N., Pan, J.Z.: RDFS reasoning on massively parallel hardware. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 133–148. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and abstract syntax. W3C recommendation (2006)Google Scholar
  9. 9.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  10. 10.
    Madalińska-Bugaj, E., Nguyen, L.A.: Generalizing the QSQR evaluation method for horn knowledge bases. In: Nguyen, N.T., Katarzyniak, R. (eds.) New Challenges in Applied Intelligence Technologies, pp. 145–154. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Madalińska-Bugaj, E., Nguyen, L.A.: A generalized QSQR evaluation method for horn knowledge bases. ACM Trans. Comput. Logic 13(4), 32:1–32:28 (2012)Google Scholar
  12. 12.
    Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of datalog programs in centralised, main-memory RDF systems. In: Proceedings of AAAI. AAAI Press (2014)Google Scholar
  13. 13.
    Nejdl, W.: Recursive strategies for answering recursive queries - The RQA/FQI strategy. In: Proceedings of the 13th International Conference on Very Large Data Bases, pp. 43–50. Morgan Kaufmann Publishers Inc. (1987)Google Scholar
  14. 14.
    Prud’Hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C recommendation (2008)Google Scholar
  15. 15.
    Pérez-Urbina, H., Rodriguez-Díaz, E., Grove, M., Konstantinidis, G., Sirin, E.: Evaluation of query rewriting approaches for OWL 2. In: Proceedings of SSWS+HPCSW (2012)Google Scholar
  16. 16.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (2009)Google Scholar
  17. 17.
    Salvadores, M., Correndo, G., Harris, S., Gibbins, N., Shadbolt, N.: The design and implementation of minimal RDFS backward reasoning in 4store. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 139–153. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: A web-scale parallel inference engine using MapReduce. Web Semant. Sci. Serv. Agents World Wide Web 10, 59–75 (2012)CrossRefGoogle Scholar
  19. 19.
    Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: Parallel materialization of dynamic RDF data. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Urbani, J., Margara, A., Jacobs, C., Voulgaris, S., Bal, H.: AJIRA: A lightweight distributed middleware for MapReduce and stream processing. In: 2014 IEEE 34th International Conference on Distributed Computing Systems (ICDCS), pp. 545–554, June 2014Google Scholar
  21. 21.
    Urbani, J., Piro, R., van Harmelen, F., Bal, H.: Hybrid reasoning on OWL RL. Semant. Web 5(6), 423–447 (2014)Google Scholar
  22. 22.
    Urbani, J., van Harmelen, F., Schlobach, S., Bal, H.: QueryPIE: Backward reasoning for OWL horst over very large knowledge bases. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 730–745. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Approach. In: Expert Database Conference, pp. 253–267 (1986)Google Scholar
  24. 24.
    Vieille, L.: A database-complete proof procedure based on SLD-resolution. In: Logic Programming, Proceedings of the Fourth International Conference, pp. 74–103 (1987)Google Scholar
  25. 25.
    Vieille, L.: From QSQ towards QoSaQ: global optimization of recursive queries. In: Expert Database Conference, pp. 743–778 (1988)Google Scholar
  26. 26.
    Vieille, L.: Recursive query processing: the power of logic. Theoret. Comput. Sci. 69(1), 1–53 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Complete query answering over horn ontologies using a triple store. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 720–736. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Zhou, Y., Nenov, Y., Grau, B.C., Horrocks, I.: Pay-as-you-go OWL query answering using a triple store. In: Proceedings of AAAI, pp. 1142–1148. AAAI Press (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Max Planck Institute for InformaticsSaarbrueckenGermany

Personalised recommendations