On the Smoothness of Paging Algorithms

  • Jan ReinekeEmail author
  • Alejandro Salinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9499)


We study the smoothness of paging algorithms. How much can the number of page faults increase due to a perturbation of the request sequence? We call a paging algorithm smooth if the maximal increase in page faults is proportional to the number of changes in the request sequence. We also introduce quantitative smoothness notions that measure the smoothness of an algorithm.

We derive lower and upper bounds on the smoothness of deterministic and randomized demand-paging and competitive algorithms. Among strongly-competitive deterministic algorithms LRU matches the lower bound, while FIFO matches the upper bound.

Well-known randomized algorithms like Partition, Equitable, or Mark are shown not to be smooth. We introduce two new randomized algorithms, called Smoothed-LRU and LRU-Random. Smoothed-LRU allows to sacrifice competitiveness for smoothness, where the trade-off is controlled by a parameter. LRU-Random is at least as competitive as any deterministic algorithm while smoother.


Competitive Ratio Online Algorithm Deterministic Algorithm Competitive Algorithm Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the DFG as part of the SFB/TR 14 AVACS.


  1. 1.
    Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)CrossRefGoogle Scholar
  2. 2.
    Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)CrossRefGoogle Scholar
  3. 3.
    Aho, A., Denning, P., Ullman, J.: Principles of optimal page replacement. J. ACM 18(1), 80–93 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    McGeoch, L., Sleator, D.: A strongly competitive randomized paging algorithm. Algorithmica 6, 816–825 (1991). doi: 10.1007/BF01759073 zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theoret. Comput. Sci. 234(1–2), 203–218 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Axer, P., et al.: Building timing predictable embedded systems. ACM Trans. Embed. Comput. Syst. 13(4), 82:1–82:37 (2014)CrossRefGoogle Scholar
  9. 9.
    Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of programs. Commun. ACM 55(8), 107–115 (2012)CrossRefGoogle Scholar
  10. 10.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Doychev, G., et al.: CacheAudit: a tool for the static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32 (2015)CrossRefGoogle Scholar
  12. 12.
    Doyen, L., Henzinger, T., Legay, A., Nickovic, D.: Robustness of sequential circuits. In: ACSD 2010, pp. 77–84 (2010)Google Scholar
  13. 13.
    Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, Princeton University Press, Princeton (1956)Google Scholar
  14. 14.
    Perles, M., Rabin, M., Shamir, E.: The theory of definite automata. IEEE Trans. Electron. Comput. 12(3), 233–243 (1963)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, C.L.: Some memory aspects of finite automata. Technical report 411, Massachusetts Institute of Technology, May 1963Google Scholar
  16. 16.
    Reineke, J., Grund, D.: Sensitivity of cache replacement policies. ACM Trans. Embed. Comput. Syst. 12(1s), 42:1–42:18 (2013)CrossRefGoogle Scholar
  17. 17.
    Cazorla, F.J., et al.: PROARTIS: probabilistically analyzable real-time systems. ACM Trans. Embed. Comput. Syst. 12(2s), 94:1–94:26 (2013)CrossRefGoogle Scholar
  18. 18.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)zbMATHGoogle Scholar
  19. 19.
    Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)zbMATHCrossRefGoogle Scholar
  20. 20.
    Reineke, J., Salinger, A.: On the smoothness of paging algorithms, October 2015. arxiv:1510.03362

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations