Constant-Time Local Computation Algorithms

  • Yishay Mansour
  • Boaz Patt-Shamir
  • Shai VardiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9499)


Local computation algorithms (LCAs) produce small parts of a single solution to a given search problem using time and space sublinear in the size of the input. In this work we present LCAs whose time complexity (and usually also space complexity) is independent of the input size. Specifically, we give (1) a \((1-\epsilon )\)-approximation LCA to the maximal weighted base of a graphic matroid (i.e., maximal acyclic edge set), (2) LCAs for approximating multicut and integer multicommodity flow on trees, and (3) a local reduction of weighted matching to any unweighted matching LCA, such that the running time of the weighted matching LCA is also independent of the edge weight function.



The authors would like to thank the anonymous reviewers for their useful feedback.


  1. 1.
    Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1132–1139 (2012)Google Scholar
  2. 2.
    Even, G., Medina, M., Ron, D.: Deterministic stateless centralized local algorithms for bounded degree graphs. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 394–405. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed approximate matching. SIAM J. Comput. 39(2), 445–460 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 260–273. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem: Translation of both the 1926 papers, comments, history. Discrete Math. 233(1), 3–36 (2001)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–336 (2008)Google Scholar
  10. 10.
    Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14(2), 97–100 (2001)CrossRefGoogle Scholar
  11. 11.
    Reingold, O., Vardi, S.: New techniques and tighter bounds for local computation algorithms (2015). Under submissionGoogle Scholar
  12. 12.
    Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proceedings of the 2nd Symposium on Innovations in Computer Science (ICS), pp. 223–238 (2011)Google Scholar
  13. 13.
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24 (2013)CrossRefGoogle Scholar
  14. 14.
    Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia (1983)CrossRefGoogle Scholar
  15. 15.
    Uehara, R., Chen, Z.-Z.: Parallel approximation algorithms for maximum weighted matching in general graphs. In: Watanabe, O., Hagiya, M., Ito, T., Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 84–98. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 335–348. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Yoshida, Y., Yamamoto, M., Ito, H.: Improved constant-time approximation algorithms for maximum matchings and other optimization problems. SIAM J. Comput. 41(4), 1074–1093 (2012)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Microsoft ResearchHerzliyaIsrael

Personalised recommendations