International Workshop on Approximation and Online Algorithms

Approximation and Online Algorithms pp 1-12 | Cite as

Approximation Algorithms for k-Connected Graph Factors

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9499)

Abstract

Finding low-cost spanning subgraphs with given degree and connectivity requirements is a fundamental problem in the area of network design. We consider the problem of finding d-regular spanning subgraphs (or d-factors) of minimum weight with connectivity requirements. For the case of k-edge-connectedness, we present approximation algorithms that achieve constant approximation ratios for all \(d \ge 2 \cdot \lceil k/2 \rceil \). For the case of k-vertex-connectedness, we achieve constant approximation ratios for \(d \ge 2k-1\). Our algorithms also work for arbitrary degree sequences if the minimum degree is at least \(2 \cdot \lceil k/2 \rceil \) (for k-edge-connectivity) or \(2k-1\) (for k-vertex-connectivity).

References

  1. 1.
    Chan, Y.H., Fung, W.S., Lau, L.C., Yung, C.K.: Degree bounded network design with metric costs. SIAM J. Comput. 40(4), 953–980 (2011)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Appl. Math. 27(1–2), 59–68 (1990)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost \(k\)-vertex connected subgraph. SIAM J. Comput. 32(4), 1050–1055 (2003)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. SIAM J. Discrete Math. 21(3), 612–636 (2007)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S.: Approximability of connected factors. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 120–131. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Czumaj, A., Lingas, A.: Minimum \(k\)-connected geometric networks. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 536–539. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A network-flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms 24(2), 310–324 (1997)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fukunaga, T., Nagamochi, H.: Network design with edge-connectivity and degree constraints. Theor. Comput. Syst. 45(3), 512–532 (2009)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fukunaga, T., Nagamochi, H.: Network design with weighted degree constraints. Discrete Optim. 7(4), 246–255 (2010)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fukunaga, T., Ravi, R.: Iterative rounding approximation algorithms for degree-bounded node-connectivity network design. In: Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 263–272. IEEE Computer Society (2012)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  12. 12.
    Goemans, M.X., Bertsimas, D.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60, 145–166 (1993)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kammer, F., Täubig, H.: Connectivity. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 143–177. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Khandekar, R., Kortsarz, G., Nutov, Z.: On some network design problems with degree constraints. J. Comput. Syst. Sci. 79(5), 725–736 (2013)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Khuller, S., Raghavachari, B.: Graph connectivity. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 371–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J. ACM 41(2), 214–235 (1994)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers. Algorithmica 37(2), 75–92 (2003)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM J. Comput. 42(6), 2217–2242 (2013)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Lau, L.C., Zhou, H.: A unified algorithm for degree bounded survivable network design. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 369–380. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  21. 21.
    Lovász, L., Plummer, M.D.: Matching Theory, North-Holland Mathematics Studies, vol. 121. Elsevier (1986)Google Scholar
  22. 22.
    Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM 62(1), 1:1–1:19 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Upper Saddle River (2001)Google Scholar
  25. 25.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)MATHCrossRefGoogle Scholar
  26. 26.
    Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. In: Rayward-Smith, V.J. (ed.) Combinatorial Optimization II, Mathematical Programming Studies, vol. 13, pp. 121–134. Springer, Heidelberg (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands

Personalised recommendations