Advertisement

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9541)

Abstract

Subgame perfect equilibria are specific Nash equilibria in perfect information games in extensive form. They are important because they relate to the rationality of the players. They always exist in infinite games with continuous real-valued payoffs, but may fail to exist even in simple games with slightly discontinuous payoffs. This article considers only games whose outcome functions are measurable in the Hausdorff difference hierarchy of the open sets (i.e. \({ {\Delta }}^0_2\) when in the Baire space), and it characterizes the families of linear preferences such that every game using these preferences has a subgame perfect equilibrium: the preferences without infinite ascending chains (of course), and such that for all players a and b and outcomes xyz we have \(\lnot (z <_a y <_a x \,\wedge \, x <_b z <_b y)\). Moreover at each node of the game, the equilibrium constructed for the proof is Pareto-optimal among all the outcomes occurring in the subgame. Additional results for non-linear preferences are presented.

Keywords

Infinite multi-player games in extensive form Subgame perfection Borel hierarchy Preference characterization Pareto-optimality 

Notes

Acknowledgements

I thank Vassilios Gregoriades and Arno Pauly for useful discussions. The author is supported by the ERC inVEST (279499) project.

References

  1. 1.
    Abramsky, S., Winschel, V.: Coalgebraic analysis of subgame-perfect equilibria in infinite games without discounting (2012). arXiv preprintGoogle Scholar
  2. 2.
    Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quantitative reachability games. Logical Methods in Computer Science, vol. 9 (2012)Google Scholar
  3. 3.
    Brihaye, T., Bruyère, V., Meunier, N., Raskin, J.F.: Weak subgame perfect equilibria and their application to quantitative reachability (2015)Google Scholar
  4. 4.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)CrossRefMATHGoogle Scholar
  5. 5.
    Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction. Math. Struct. Comput. Sci. 20(4), 127–168 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze, K.: Perfect-information games with lower-semicontinuous payoffs. Math. Oper. Res. 35, 742–755 (2010)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Shmaya, E., Solan, E., Vrieze, K.: Non-existence of subgame-perfect \(\varepsilon \)-equilibrium in perfect information games with infinite horizon. Int. J. Game Theor. 43(4), 945–951 (2014)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Fudenberg, D., Levine, D.: Subgame-perfect equilibria of finite- and infinite-horizon games. J. Econ. Theor. 31(2), 251–268 (1983)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Gale, D., Stewart, F.M.: Infinite games with perfect information. Ann. Math. Stud. 28, 245–266 (1953)MathSciNetGoogle Scholar
  10. 10.
    Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)MATHGoogle Scholar
  12. 12.
    Kuhn, H.W.: Extensive games and the problem of information. In: Contributions to the Theory of Games II, pp. 193–216 (1953)Google Scholar
  13. 13.
    Le Roux, S.: Acyclic preferences and existence of sequential nash equilibria: a formal and constructive equivalence. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Le Roux, S.: Infinite sequential Nash equilibrium. Logical Methods in Computer Science, 9 (2013). Special Issue for the Conference Computability and Complexity in Analysis, (CCA 2011)Google Scholar
  15. 15.
    Le Roux, S.: From winning strategy to Nash equilibrium. Math. Logic Q. 60, 354–371 (2014)CrossRefMATHGoogle Scholar
  16. 16.
    Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs. In: Proceedings of LiCS (2014)Google Scholar
  17. 17.
    Le Roux, S., Pauly, A.: Weihrauch degrees of finding equilibria in sequential games. In: Proceedings of CiE 2015 (2015) (to appear)Google Scholar
  18. 18.
    Lescanne, P., Perrinel, M.: Backward coinduction, Nash equilibrium and the rationality of escalation. Acta Informatica 49(3), 117–137 (2012)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)CrossRefMATHGoogle Scholar
  20. 20.
    Martin, D.A.: An extension of Borel determinacy. Ann. Pure Appl. Logic 49, 279–293 (1990)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Mertens, J-F.: Repeated games. In: Proceedings of the International Congress of Mathematicians, pp. 1528–1577. American Mathematical Society (1987)Google Scholar
  22. 22.
    Purves, R., Sudderth, W.: Perfect information games with upper-semicontinuous payoffs. Math. Oper. Res. 36, 468–473 (2011)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die desamte Staatswissenschaft, vol. 121 (1965)Google Scholar
  24. 24.
    Smith, M.J., Price, G.R.: The logic of animal conflicts. Nature 246, 15–18 (1973)CrossRefGoogle Scholar
  25. 25.
    Solan, E., Vieille, N.: Deterministic multi-player dynkin games. J. Math. Econ. 39(8), 911–929 (2003)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Wolfe, P.: The strict determinateness of certain infinite games. Pac. J. Math. 5, 841–847 (1955)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations