Visual Analytics of Electronic Health Records with a Focus on Time

  • Alexander Rind
  • Paolo Federico
  • Theresia Gschwandtner
  • Wolfgang Aigner
  • Jakob Doppler
  • Markus Wagner
Part of the TELe-Health book series (TEHE)


Visual Analytics is a field of computer science that deals with methods to perform data analysis using both computer-based methods and human judgment facilitated by direct interaction with visual representations of data. Electronic health record systems that apply Visual Analytics methods have the potential to provide healthcare stakeholders with much-needed cognitive support in exploring and querying records. This chapter presents Visual Analytics projects addressing five particular challenges of electronic health records: (1) The complexity of time-oriented data constitutes a cross-cutting challenge so that all projects need to consider design aspects of time-oriented data in one way or another. (2) As electronic health records encompass patient conditions and treatment, they are inherently heterogeneous data. (3) Scaling from single patients to cohorts requires approaches for relative time, space efficiency, and aggregation. (4) Data quality and uncertainty are common issues that need to be considered in real-world projects. (5) A user-centered design process and suitable interaction techniques are another cross-cutting challenge for each and every Visual Analytics project.


Visual Analytic Electronic Health Record Clinical Decision Support System Personal Health Record Electronic Health Record System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Silvia Miksch for valuable inputs and discussions prior to this work. This work was supported by the Austrian Science Fund FWF [grant number P22883].


  1. 1.
    Aigner W (2011) Understanding the role and value of interaction: first steps. In: Miksch S, Santucci G (eds) Proceedings of the International Workshop Visual Analytics (EuroVA). Eurographics, Goslar, pp 17–20Google Scholar
  2. 2.
    Aigner W, Miksch S (2006) CareVis: integrated visualization of computerized protocols and temporal patient data. Artif Intell Med 37(3):203–218CrossRefPubMedGoogle Scholar
  3. 3.
    Aigner W, Miksch S, Thurnher B, Biffl S (2005) PlanningLines: novel glyphs for representing temporal uncertainties and their evaluation. In: Proceedings of the 9th International Conference on Information Visualisation (IV), IEEE, pp 457–463Google Scholar
  4. 4.
    Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer, LondonCrossRefGoogle Scholar
  5. 5.
    Aigner W, Federico P, Gschwandtner T, Miksch S, Rind A (2012) Challenges of time-oriented visual analytics in healthcare. In: Caban JJ, Gotz D (eds) Proceedings of the VisWeek 2012 Workshop on Visual Analytics in Healthcare, pp 17–20Google Scholar
  6. 6.
    Aigner W, Rind A, Hoffmann S (2012) Comparative evaluation of an interactive time-series visualization that combines quantitative data with qualitative abstractions. Comput Graph Forum 31(3):995–1004CrossRefGoogle Scholar
  7. 7.
    Bade R, Schlechtweg S, Miksch S (2004) Connecting time-oriented data and information to a coherent interactive visualization. In: Dykstra-Erickson E, Tscheligi M (eds) Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, pp 105–112Google Scholar
  8. 8.
    Bertini E, Lalanne D (2009) Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In: Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration, VAKD, pp 12–20Google Scholar
  9. 9.
    Blumenstein K,Wagner M, Aigner W (2015) Cross–platform infoVis frameworks for multiple users, screens and devices: requirements and challenges. In: Proceedings of the DEXiS 2015 Workshop on Data Exploration for Interactive Surfaces. Workshop in conjunction with ACM ITS’15, FunchalGoogle Scholar
  10. 10.
    Caban JJ, Gotz D (2015) Visual analytics in healthcare – opportunities and research challenges. J Am Med Inform Assoc 22(2):260–262CrossRefPubMedGoogle Scholar
  11. 11.
    Caban JJ, Gotz D, Perer A, Kharrazi H (eds) (2014) Proceedings of the 2014 Workshop on Visual Analytics in Healthcare. Available from: Cited 6 Nov 2015
  12. 12.
    Card SK, Mackinlay JD, Shneiderman B (eds) (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San FranciscoGoogle Scholar
  13. 13.
    Chen M, Ebert D, Hagen H, Laramee R, van Liere R, Ma K, Ribarsky W, Scheuermann G, Silver D (2009) Data, information, and knowledge in visualization. IEEE Comput Graph Appl 29(1):12–19CrossRefPubMedGoogle Scholar
  14. 14.
    Chittaro L, Combi C (2003) Visualizing queries on databases of temporal histories: new metaphors and their evaluation. Data Knowl Eng 44(2):239–264CrossRefGoogle Scholar
  15. 15.
    Endert A, Hossain MS, Ramakrishnan N, North C, Fiaux P, Andrews C (2014) The human is the loop: new directions for visual analytics. J Intell Inf Syst 43(3):411–435CrossRefGoogle Scholar
  16. 16.
    Federico P, Hoffmann S, Rind A, Aigner W, Miksch S (2014) Qualizon graphs: space-efficient time-series visualization with qualitative abstractions. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, AVI, ACM, pp 273–280Google Scholar
  17. 17.
    Federico P, Unger J, Amor-Amoros A, Sacchi L, Klimov D, Miksch S (2015) Gnaeus: utilizing clinical guidelines for knowledge-assisted visualisation of EHR cohorts. In: Bertini E, Roberts JC (eds) Proceedings of the EuroVis Workshop on Visual Analytics, EuroVA, Eurographics, pp 79–83Google Scholar
  18. 18.
    Grinter RE, Siek KA, Grimes A (2010) Is wellness informatics a field of human-centered health informatics? Interactions 17(1):76–79CrossRefGoogle Scholar
  19. 19.
    Gschwandtner T, Aigner W, Kaiser K, Miksch S, Seyfang A (2011) CareCruiser: exploring and visualizing plans, events, and effects interactively. In: Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), pp 43–50Google Scholar
  20. 20.
    Gschwandtner T, Aigner W, Kaiser K, Miksch S, Seyfang A (2011) Design and evaluation of an interactive visualization of therapy plans and patient data. In: Proceedings of the 25th BCS Conference on Human-Computer Interaction, BCS-HCI, British Computer Society, pp 421–428Google Scholar
  21. 21.
    Gschwandtner T, Gärtner J, Aigner W, Miksch S (2012) A taxonomy of dirty time-oriented data. In: Multidisciplinary research and practice for information systems, Proceedings of the CD-ARES 2012, Springer, Berlin, LNCS 7465, pp 58–72Google Scholar
  22. 22.
    Gschwandtner T, AignerW, Miksch S, Gärtner J, Kriglstein S, Pohl M, Suchy N (2014) Time- cleanser: a visual analytics approach for data cleansing of time-oriented data. In: Lindstaedt S, Granitzer M, Sack H (eds) Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business (i-KNOW 2014), ACM, pp 1–8Google Scholar
  23. 23.
    Gschwandtner T, Perer A, Bernard J (eds) (2015) Proceedings of the 2015 Workshop on Visual Analytics in Healthcare. ACM, New YorkGoogle Scholar
  24. 24.
    Gschwandtner T, Bögl M, Federico P, Miksch S (2016) Visual encodings of temporal uncertainty: a comparative user study. IEEE Trans Vis Comput Graph 22(1):539–548CrossRefGoogle Scholar
  25. 25.
    Hinum K, Miksch S, Aigner W, Ohmann S, Popow C, Pohl M, Rester M (2005) Gravi++: interactive information visualization to explore highly structured temporal data. J Univers Comput Sci 11(11):1792–1805Google Scholar
  26. 26.
    Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age – solving problems with visual analytics. Eurographics, GoslarGoogle Scholar
  27. 27.
    Keim DA, Mansmann F, Schneidewind J, Ziegler H (2006) Challenges in visual data analysis. In: Proceedings of the Tenth International Conference on Information Visualization, IV, pp 9–16Google Scholar
  28. 28.
    Kim W, Choi BJ, Hong EK, Kim SK, Lee D (2003) A taxonomy of dirty data. Data Min Knowl Disc 7(1):81–99CrossRefGoogle Scholar
  29. 29.
    Kosara R, Miksch S (2001) Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans. Artif Intell Med 22(2):111–131CrossRefPubMedGoogle Scholar
  30. 30.
    Lam H (2008) A framework of interaction costs in information visualization. IEEE Trans Vis Comput Graph 14(6):1149–1156CrossRefPubMedGoogle Scholar
  31. 31.
    Lhuillier A, Hurter C, Jouffrais C, Barbeau E, Amieva H (2015) Visual analytics for the interpretation of fluency tests during Alzheimer evaluation. In: Proceedings of the 2015 Workshop on Visual Analytics in Healthcare, VAHC, ACM, pp 3:1–3:8Google Scholar
  32. 32.
    Malik S, Du F, Monroe M, Onukwugha E, Plaisant C, Shneiderman B (2015) Cohort comparison of event sequences with balanced integration of visual analytics and statistics. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI, ACM, pp 38–49Google Scholar
  33. 33.
    Miksch S, Aigner W (2014) A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput Graph 38:286–290CrossRefGoogle Scholar
  34. 34.
    Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, Rigon G, Vaona A, Ruggiero F, Mangia M, Iorio A, Kunnamo I, Bonovas S (2014) Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am J Public Health 104(12):e12–e22CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Monroe M, Lan R, Lee H, Plaisant C, Shneiderman B (2013) Temporal event sequence simplification. IEEE Trans Vis Comput Graph 19(12):2227–2236CrossRefPubMedGoogle Scholar
  36. 36.
    Monroe M, Lan R, Morales del Olmo J, Shneiderman B, Plaisant C, Millstein J (2013) The challenges of specifying intervals and absences in temporal queries: A graphical language approach. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, ACM, pp 2349–2358Google Scholar
  37. 37.
    Munzner T (2014) Visualization analysis and design. AK Peters/CRC, Boca RatonGoogle Scholar
  38. 38.
    Niederer C, Rind A, Aigner W (2016) Multi-Device Visualisation Design for Climbing Self-Assessment. In: Proceedings of 20th International Conference on Information Visualisation, iV16, IEEE, forthcomingGoogle Scholar
  39. 39.
    Ordonez P, Oates T, Lombardi ME, Hernandez G, Holmes KW, Fackler J, Lehmann CU (2012) Visualization of multivariate time-series data in a neonatal ICU. IBM J Res Dev 56(5):7–1, 7:12CrossRefGoogle Scholar
  40. 40.
    Pagliari C (2015) The changing face of the personal health record: trends and futures in digital empowerment and personalisation. In: Rinaldi G (ed) New perspectives in medical records: meeting the needs of patients and practitioners. Springer (forthcoming)Google Scholar
  41. 41.
    Peleg M (2013) Computer-interpretable clinical guidelines. J Biomed Inform 46(4):744–763CrossRefPubMedGoogle Scholar
  42. 42.
    Pike WA, Stasko J, Chang R, O’Connell TA (2009) The science of interaction. Inf Vis 8(4):263–274CrossRefGoogle Scholar
  43. 43.
    Plaisant C, Mushlin R, Snyder A, Li J, Heller D, Shneiderman B (1998) LifeLines: using visualization to enhance navigation and analysis of patient records. In: Proceedings of the AMIA Symposium, pp 76–80Google Scholar
  44. 44.
    Plaisant C, Miksch S, Gschwandtner T, Malik S (eds) (2014) Proceedings of the IEEE VIS 2014 Workshop on Visualizing Electronic Health Record Data. Available from: Cited 6 Nov 2015
  45. 45.
    Pohl M, Wiltner S, Rind A, Aigner W, Miksch S, Turic T, Drexler F (2011) Patient development at a glance: an evaluation of a medical data visualization. In: Campos P, Graham N, Jorge J, Nunes N, Palanque P, Winckler M (eds) Proceedings of the IFIP Human-Computer Interaction – INTERACT 2011, Part IV. Springer, Heidelberg, pp 292–299, LNCS 6949CrossRefGoogle Scholar
  46. 46.
    Pohl M, Wiltner S, Miksch S, Aigner W, Rind A (2012) Analysing interactivity in information visualisation. KI - Künstliche Intelligenz 26:151–159CrossRefGoogle Scholar
  47. 47.
    Quaglini S (2007) Compliance with clinical practice guidelines. Stud Health Technol Inf 139:160–179Google Scholar
  48. 48.
    Reijner H (2008) The development of the horizon graph. In: Bartram L, Stone M, Gromala D (eds) Proceedings of the Vis08 Workshop from Theory to Practice: Design, Vision and VisualizationGoogle Scholar
  49. 49.
    Rind A, Aigner W, Miksch S, Wiltner S, Pohl M, Drexler F, Neubauer B, Suchy N (2011) Visually exploring multivariate trends in patient cohorts using animated scatter plots. In: Robertson MM (ed) EHAWC 2011 and HCII 2011. Springer, Heidelberg, pp 139–148, LNCS 6779Google Scholar
  50. 50.
    Rind A, Aigner W, Miksch S, Wiltner S, Pohl M, Turic T, Drexler F (2011) Visual exploration of time-oriented patient data for chronic diseases: design study and evaluation. In: Holzinger A, Simonic K (eds) USAB 2011. Springer, Heidelberg, pp 301–320, LNCS 7058Google Scholar
  51. 51.
    Rind A, Wang TD, Aigner W, Miksch S, Wongsuphasawat K, Plaisant C, Shneiderman B (2013) Interactive information visualization to explore and query electronic health records. Found Trends Hum Comput Interact 5(3):207–298CrossRefGoogle Scholar
  52. 52.
    Rind A, Aigner W, Wagner M, Miksch S, Lammarsch T (2015) Task Cube: a three-dimensional conceptual space of user tasks in visualization design and evaluation. Information Visualization, Published online before print 27 Dec 2015. doi: 10.1177/1473871615621602
  53. 53.
    Saraiya P, North C, Duca K (2004) An evaluation of microarray visualization tools for biological insight. In: Proceedings of the IEEE Symposium on Information Visualization, INFOVIS, pp 1–8Google Scholar
  54. 54.
    Shahar Y (1997) A framework for knowledge-based temporal abstraction. Artif Intell 90(1–2):79–133CrossRefGoogle Scholar
  55. 55.
    Spence R (2007) Information visualization: design for interaction, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  56. 56.
    Thomas JJ, Cook KA (eds) (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE, Los Alamitos, CA, USAGoogle Scholar
  57. 57.
    Wagner M (2015) Integrating explicit knowledge in the visual analytics process. In: Doctoral Consortium on Computer Vision, Imaging and Computer Graphics Theory and Applications (DCVISIGRAPP 2015), SCITEPRESS Digital Library, BerlinGoogle Scholar
  58. 58.
    Wang TD, Wongsuphasawat K, Plaisant C, Shneiderman B (2011) Extracting insights from electronic health records: case studies, a visual analytics process model, and design recommendations. J Med Syst 35(5):1135–1152CrossRefPubMedGoogle Scholar
  59. 59.
    Wongsuphasawat K, Gotz D (2012) Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Trans Vis Comput Graph 18(12):2659–2668CrossRefPubMedGoogle Scholar
  60. 60.
    Wongsuphasawat K, Guerra Gomez JA, Plaisant C,Wang TD, Taieb-Maimon M, Shneiderman B (2011) LifeFlow: visualizing an overview of event sequences. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI, pp 1747–1756Google Scholar
  61. 61.
    Zhang Z, Wang B, Ahmed F, Ramakrishnan IV, Zhao R, Viccellio A, Mueller K (2013) The five Ws for information visualization with application to healthcare informatics. IEEE Trans Vis Comput Graph 19(11):1895–1910CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alexander Rind
    • 1
  • Paolo Federico
    • 2
  • Theresia Gschwandtner
    • 2
  • Wolfgang Aigner
    • 1
  • Jakob Doppler
    • 1
  • Markus Wagner
    • 1
  1. 1.St. Poelten University of Applied SciencesSt. PoeltenAustria
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations