Advertisement

Ontogeny of Sleep and Its Functions in Infancy, Childhood, and Adolescence

  • Madeleine Marie Grigg-Damberger
Chapter

Abstract

We have long understood sleep as an active, not passive, process that serves many functions, some of which vary in importance across the human lifespan. Ontogeny is the study of how a living organism develops from conception to birth and across its lifespan. This chapter reviews the ontogeny of sleep and its functions from infancy through adolescence. Sleep in humans serves many functions including: (1) fostering optimal brain growth and development; (2) enhancing learning, attention, memory, synaptic efficiency, and plasticity; (3) regulation of emotion, appetite, feeding, body weight, risk-taking, and pleasure-seeking behaviors; (4) strengthening immune function; and (5) providing optimal time for clearing the brain of cellular debris and neurotoxins. The chapter provides summaries of growing evidence for each of these. Sleep/wake states are scored in polysomnography using electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), and the ontogeny of these is also reviewed here.

Keywords

NREM disorder of arousal (DoA) Parasomnias Polysomnography Polysomnogram (PSG) REM sleep behavior disorder (RBD) REM sleep without atonia (RSWA) Sleepwalking 

References

  1. 1.
    Sorribes A, Thornorsteinsson H, Arnardottir H, Johannesdottir I, Sigurgeirsson B, de Polavieja GG, et al. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans. Front Neural Circ. 2013;7:178.Google Scholar
  2. 2.
    Blumberg MS. Ontogeny of sleep. In: Kushida CA, editor. Encyclopedia of sleep, Elsevier, Boston, MA. 1st ed. 2013. p. 32–7.Google Scholar
  3. 3.
    Corner M, van der Togt C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci Bull. 2012;28(1):25–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Blumberg MS, Marques HG, Iida F. Twitching in sensorimotor development from sleeping rats to robots. Curr Biol CB. 2013;23(12):R532–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R. Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex. 2007;17(7):1582–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaida K, Niki K, Born J. Role of sleep for encoding of emotional memory. Neurobiol Learn Mem. 2015;121:72–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Genzel L, Spoormaker VI, Konrad BN, Dresler M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem. 2015;122:110–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes DC, Wilson DA. Sleep and olfactory cortical plasticity. Front Behav Neurosci. 2014;8:134.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weber FD, Wang JY, Born J, Inostroza M. Sleep benefits in parallel implicit and explicit measures of episodic memory. Learn Mem. 2014;21(4):190–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Inostroza M, Born J. Sleep for preserving and transforming episodic memory. Annu Rev Neurosci. 2013;36:79–102.PubMedCrossRefGoogle Scholar
  11. 11.
    van der Helm E, Gujar N, Nishida M, Walker MP. Sleep-dependent facilitation of episodic memory details. PLoS ONE. 2011;6(11), e27421.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Walker MP, Stickgold R, Alsop D, Gaab N, Schlaug G. Sleep-dependent motor memory plasticity in the human brain. Neuroscience. 2005;133(4):911–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Fischer S, Nitschke MF, Melchert UH, Erdmann C, Born J. Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci Off J Soc Neurosci. 2005;25(49):11248–55.CrossRefGoogle Scholar
  14. 14.
    Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tononi G, Cirelli C. Perchance to prune. During sleep, the brain weakens the connections among nerve cells, apparently conserving energy, and paradoxically, aiding memory. Sci Am. 2013;309(2):34–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Frank E, Sidor MM, Gamble KL, Cirelli C, Sharkey KM, Hoyle N, et al. Circadian clocks, brain function, and development. Ann N Y Acad Sci. 2013;1306:43–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Frank MG. Sleep and synaptic plasticity in the developing and adult brain. Curr Top Behav Neurosci. 2015;25:123–49.Google Scholar
  18. 18.
    Tavernier R, Willoughby T. A longitudinal examination of the bidirectional association between sleep problems and social ties at university: the mediating role of emotion regulation. J Youth Adolesc. 2015;44(2):317–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Gruber R, Cassoff J. The interplay between sleep and emotion regulation: conceptual framework empirical evidence and future directions. Curr Psychiatry Rep. 2014;16(11):500.PubMedCrossRefGoogle Scholar
  20. 20.
    Deliens G, Gilson M, Peigneux P. Sleep and the processing of emotions. Exp Brain Res. 2014;232(5):1403–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Desseilles M, Duclos C. Dream and emotion regulation: insight from the ancient art of memory. Behav Brain Sci. 2013;36(6):614; discussion 34–59.PubMedCrossRefGoogle Scholar
  22. 22.
    van der Helm E, Walker MP. Sleep and emotional memory processing. Sleep Med Clin. 2011;6(1):31–43.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Holm SM, Forbes EE, Ryan ND, Phillips ML, Tarr JA, Dahl RE. Reward-related brain function and sleep in pre/early pubertal and mid/late pubertal adolescents. J Adolesc Health. 2009;45(4):326–34.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dahl RE. The impact of inadequate sleep on children’s daytime cognitive function. Semin Pediatr Neurol. 1996;3(1):44–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Harrison Y, Horne JA. The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl. 2000;6(3):236–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Telzer EH, Fuligni AJ, Lieberman MD, Galvan A. The effects of poor quality sleep on brain function and risk taking in adolescence. NeuroImage. 2013;71:275–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Kurien PA, Chong SY, Ptacek LJ, Fu YH. Sick and tired: how molecular regulators of human sleep schedules and duration impact immune function. Curr Opin Neurobiol. 2013;23(5):873–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol. 2013;23(5):806–11.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ibarra-Coronado EG, Pantaleon-Martinez AM, Velazquez-Moctezuma J, Prospero-Garcia O, Mendez-Diaz M, Perez-Tapia M, et al. The bidirectional relationship between sleep and immunity against infections. J Immunol Res. 2015;2015:678164.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hurtado-Alvarado G, Pavon L, Castillo-Garcia SA, Hernandez ME, Dominguez-Salazar E, Velazquez-Moctezuma J, et al. Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clin Dev Immunol. 2013;2013:801341.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013;16(6):518–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Piaget J. Play, dreams, and imitation in childhood, vol. ix. New York: Norton; 1951. 296 p. p.Google Scholar
  35. 35.
    Piers MW, Piaget J, Erikson Institute., Loyola University Chicago. School of Education., Loyola University Chicago. Department of Psychology. Play and development; a symposium. 1st ed. New York: Norton; 1972. 176 p. p.Google Scholar
  36. 36.
    Montessori M. The Montessori method; scientific pedagogy as applied to child education in the Children’s Houses, with additions and revisions by the author, vol. xli. Cambridge, MA: R. Bentley; 1964. 377 p. p.Google Scholar
  37. 37.
    Parmelee Jr AH, Wenner WH, Schulz HR. Infant sleep patterns: from birth to 16 weeks of age. J Pediatr. 1964;65:576–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Roffwarg H, Muzio J, Dement W. Ontogenetic development of the human sleep-dream cycle. Science. 1966;152:604–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Mirmiran M, Maas YG, Ariagno RL. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev. 2003;7(4):321–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Mirmiran M. The function of fetal/neonatal rapid eye movement sleep. Behav Brain Res. 1995;69(1–2):13–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Arditi-Babchuk H, Feldman R, Eidelman AI. Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant Behav Dev. 2009;32(1):27–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T, et al. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron. 2009;61(3):454–66.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tikotzky L, DE Marcas G, Har-Toov J, Dollberg S, Bar-Haim Y, Sadeh A. Sleep and physical growth in infants during the first 6 months. J Sleep Res. 2010;19(1 Pt 1):103–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Graven S. Sleep and brain development. Clin Perinatol. 2006;33(3):693–706, vii.PubMedCrossRefGoogle Scholar
  45. 45.
    Dionne G, Touchette E, Forget-Dubois N, Petit D, Tremblay RE, Montplaisir JY, et al. Associations between sleep-wake consolidation and language development in early childhood: a longitudinal twin study. Sleep. 2011;34(8):987–95.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Frank MG, Issa NP, Stryker MP. Sleep enhances plasticity in the developing visual cortex. Neuron. 2001;30(1):275–87.PubMedCrossRefGoogle Scholar
  47. 47.
    Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience. Sleep. 2014;37(7):1163–70.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Jha SK, Jones BE, Coleman T, Steinmetz N, Law CT, Griffin G, et al. Sleep-dependent plasticity requires cortical activity. J Neurosci Off J Soc Neurosci. 2005;25(40):9266–74.CrossRefGoogle Scholar
  49. 49.
    Scher MS, Johnson MW, Holditch-Davis D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks’ postconceptional age. Pediatr Res. 2005;57(6):879–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. Prog Brain Res. 2011;193:63–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Scher A. Infant sleep at 10 months of age as a window to cognitive development. Early Hum Dev. 2005;81(3):289–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Scher A, Tse L, Hayes VE, Tardif M. Sleep difficulties in infants at risk for developmental delays: a longitudinal study. J Pediatr Psychol. 2008;33(4):396–405.PubMedCrossRefGoogle Scholar
  53. 53.
    Scher MS, Loparo KA. Neonatal EEG/sleep state analyses: a complex phenotype of developmental neural plasticity. Dev Neurosci. 2009;31(4):259–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Weisman O, Magori-Cohen R, Louzoun Y, Eidelman AI, Feldman R. Sleep-wake transitions in premature neonates predict early development. Pediatrics. 2011;128(4):706–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Shellhaas RA, Burns JW, Barks JD, Chervin RD. Quantitative sleep stage analyses as a window to neonatal neurologic function. Neurology. 2014;82(5):390–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Thomas AJ, Erokwu BO, Yamamoto BK, Ernsberger P, Bishara O, Strohl KP. Alterations in respiratory behavior, brain neurochemistry and receptor density induced by pharmacologic suppression of sleep in the neonatal period. Brain Res Dev Brain Res. 2000;120(2):181–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Touchette E, Petit D, Seguin JR, Boivin M, Tremblay RE, Montplaisir JY. Associations between sleep duration patterns and behavioral/cognitive functioning at school entry. Sleep. 2007;30(9):1213–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Blumberg MS, Coleman CM, Gerth AI, McMurray B. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr Biol CB. 2013;23(21):2100–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Blumberg MS. Beyond dreams: do sleep-related movements contribute to brain development? Front Neurol. 2010;1:140.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Blumberg MS, Gall AJ, Todd WD. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain. Behav Neurosci. 2014;128(3):250–63.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chipaux M, Colonnese MT, Mauguen A, Fellous L, Mokhtari M, Lezcano O, et al. Auditory stimuli mimicking ambient sounds drive temporal “delta-brushes” in premature infants. PLoS ONE. 2013;8(11), e79028.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Geva R, Yaron H, Kuint J. Neonatal sleep predicts attention orienting and distractibility. J Atten Disord. 2016;20(2):138–50.Google Scholar
  63. 63.
    Almadhoob A, Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst Rev. 2015;1:Cd010333.PubMedGoogle Scholar
  64. 64.
    Voos KC, Terreros A, Larimore P, Leick-Rude MK, Park N. Implementing safe sleep practices in a neonatal intensive care unit. J Matern Fetal Neonatal Med. 2015;28(14):1637–40.Google Scholar
  65. 65.
    Guedj R, Danan C, Daoud P, Zupan V, Renolleau S, Zana E, et al. Does neonatal pain management in intensive care units differ between night and day? An observational study. BMJ Open. 2014;4(2), e004086.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hwang SS, O’Sullivan A, Fitzgerald E, Melvin P, Gorman T, Fiascone JM. Implementation of safe sleep practices in the neonatal intensive care unit. J Perinatol Off J Calif Perinat Assoc. 2015;35(10):862–6.Google Scholar
  67. 67.
    Szymczak SE, Shellhaas RA. Impact of NICU design on environmental noise. J Neonatal Nurs JNN. 2014;20(2):77–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Mason B, Ahlers-Schmidt CR, Schunn C. Improving safe sleep environments for well newborns in the hospital setting. Clin Pediatr. 2013;52(10):969–75.CrossRefGoogle Scholar
  69. 69.
    Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Landmann N, Kuhn M, Piosczyk H, Feige B, Baglioni C, Spiegelhalder K, et al. The reorganisation of memory during sleep. Sleep Med Rev. 2014;18(6):531–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3(12):1237–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron. 2002;35(1):205–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P. The sleep EEG as a marker of intellectual ability in school age children. Sleep. 2011;34(2):181–9.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Astill RG, Piantoni G, Raymann RJ, Vis JC, Coppens JE, Walker MP, et al. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children. Front Hum Neurosci. 2014;8:910.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lustenberger C, Maric A, Durr R, Achermann P, Huber R. Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning. PLoS ONE. 2012;7(11), e49561.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nader RS, Smith CT. Correlations between adolescent processing speed and specific spindle frequencies. Front Hum Neurosci. 2015;9:30.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Geiger A, Huber R, Kurth S, Ringli M, Achermann P, Jenni OG. Sleep electroencephalography topography and children’s intellectual ability. Neuroreport. 2012;23(2):93–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Maski KP. Sleep-dependent memory consolidation in children. Semin Pediatr Neurol. 2015;22(2):130–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Gomez RL, Edgin JO. Sleep as a window into early neural development: shifts in sleep-dependent learning effects across early childhood. Child Dev Perspect. 2015;9(3):183–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gomez RL, Bootzin RR, Nadel L. Naps promote abstraction in language-learning infants. Psychol Sci. 2006;17(8):670–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Hupbach A, Gomez RL, Bootzin RR, Nadel L. Nap-dependent learning in infants. Dev Sci. 2009;12(6):1007–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Friedrich M, Wilhelm I, Born J, Friederici AD. Generalization of word meanings during infant sleep. Nat Commun. 2015;6:6004.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Backhaus J, Hoeckesfeld R, Born J, Hohagen F, Junghanns K. Immediate as well as delayed post learning sleep but not wakefulness enhances declarative memory consolidation in children. Neurobiol Learn Mem. 2008;89(1):76–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Prehn-Kristensen A, Goder R, Chirobeja S, Bressmann I, Ferstl R, Baving L. Sleep in children enhances preferentially emotional declarative but not procedural memories. J Exp Child Psychol. 2009;104(1):132–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Henderson LM, Weighall AR, Brown H, Gareth GM. Consolidation of vocabulary is associated with sleep in children. Dev Sci. 2012;15(5):674–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilhelm I, Metzkow-Meszaros M, Knapp S, Born J. Sleep-dependent consolidation of procedural motor memories in children and adults: the pre-sleep level of performance matters. Dev Sci. 2012;15(4):506–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Wilhelm I, Diekelmann S, Born J. Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem. 2008;15(5):373–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Fischer S, Wilhelm I, Born J. Developmental differences in sleep’s role for implicit off-line learning: comparing children with adults. J Cogn Neurosci. 2007;19(2):214–27.PubMedCrossRefGoogle Scholar
  89. 89.
    Urbain C, Galer S, Van Bogaert P, Peigneux P. Pathophysiology of sleep-dependent memory consolidation processes in children. Int J Psychophysiol Off J Int Organ Psychophysiol. 2013;89(2):273–83.Google Scholar
  90. 90.
    Killgore WD. Effects of sleep deprivation on cognition. Prog Brain Res. 2010;185:105–29.PubMedCrossRefGoogle Scholar
  91. 91.
    Vorster AP, Born J. Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev. 2015;50:103–19.PubMedCrossRefGoogle Scholar
  92. 92.
    Piantoni G, Van Der Werf YD, Jensen O, Van Someren EJ. Memory traces of long-range coordinated oscillations in the sleeping human brain. Hum Brain Mapp. 2015;36(1):67–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Tesler N, Gerstenberg M, Huber R. Developmental changes in sleep and their relationships to psychiatric illnesses. Curr Opin Psychiatry. 2013;26(6):572–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Damaraju E, Caprihan A, Lowe JR, Allen EA, Calhoun VD, Phillips JP. Functional connectivity in the developing brain: a longitudinal study from 4 to 9 months of age. NeuroImage. 2014;84:169–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Kurth S, Ringli M, Lebourgeois MK, Geiger A, Buchmann A, Jenni OG, et al. Mapping the electrophysiological marker of sleep depth reveals skill maturation in children and adolescents. NeuroImage. 2012;63(2):959–65.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci. 2011;34(9):452–63.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83(5):1131–43.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Boksa P. Abnormal synaptic pruning in schizophrenia: urban myth or reality? J Psychiatry Neurosci. 2012;37(2):75–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Saugstad LF. Infantile autism: a chronic psychosis since infancy due to synaptic pruning of the supplementary motor area. Nutr Health. 2011;20(3–4):171–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, et al. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30(12):1617–30.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30(12):1631–42.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Feinberg I, Campbell IG. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation. Am J Physiol Regul Integr Comp Physiol. 2013;304(4):R296–303.PubMedCrossRefGoogle Scholar
  107. 107.
    de Vivo L, Faraguna U, Nelson AB, Pfister-Genskow M, Klapperich ME, Tononi G, et al. Developmental patterns of sleep slow wave activity and synaptic density in adolescent mice. Sleep. 2014;37(4):689–700, A-B.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Feinberg I, Campbell IG. Sleep EEG changes during adolescence: an index of a fundamental brain reorganization. Brain Cogn. 2010;72(1):56–65.PubMedCrossRefGoogle Scholar
  109. 109.
    Walker MP, van der Helm E. Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull. 2009;135(5):731–48.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Goldstein-Piekarski AN, Greer SM, Saletin JM, Walker MP. Sleep deprivation impairs the human central and peripheral nervous system discrimination of social threat. J Neurosci Off J Soc Neurosci. 2015;35(28):10135–45.CrossRefGoogle Scholar
  111. 111.
    Goldstein AN, Walker MP. The role of sleep in emotional brain function. Annu Rev Clin Psychol. 2014;10:679–708.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Miller AL, Seifer R, Crossin R, Lebourgeois MK. Toddler’s self-regulation strategies in a challenge context are nap-dependent. J Sleep Res. 2015;24(3):279–87.PubMedCrossRefGoogle Scholar
  113. 113.
    Meldrum RC, Barnes JC, Hay C. Sleep deprivation, low self-control, and delinquency: a test of the strength model of self-control. J Youth Adolesc. 2015;44(2):465–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Hart CN, Carskadon MA, Demos KE, Van Reen E, Sharkey KM, Raynor HA, et al. Acute changes in sleep duration on eating behaviors and appetite-regulating hormones in overweight/obese adults. Behav Sleep Med. 2015;13(5):424–36.PubMedCrossRefGoogle Scholar
  115. 115.
    St-Onge MP, O’Keeffe M, Roberts AL, RoyChoudhury A, Laferrere B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep. 2012;35(11):1503–10.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Morselli L, Leproult R, Balbo M, Spiegel K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab. 2010;24(5):687–702.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kim J, Hakim F, Kheirandish-Gozal L, Gozal D. Inflammatory pathways in children with insufficient or disordered sleep. Respir Physiol Neurobiol. 2011;178(3):465–74.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Jernelov S, Lekander M, Almqvist C, Axelsson J, Larsson H. Development of atopic disease and disturbed sleep in childhood and adolescence – a longitudinal population-based study. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2013;43(5):552–9.CrossRefGoogle Scholar
  119. 119.
    Hon KL, Ching GK, Ng PC, Leung TF. Exploring CCL18, eczema severity and atopy. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2011;22(7):704–7.CrossRefGoogle Scholar
  120. 120.
    Reed P, Vile R, Osborne LA, Romano M, Truzoli R. Problematic internet usage and immune function. PLoS ONE. 2015;10(8), e0134538.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    An J, Sun Y, Wan Y, Chen J, Wang X, Tao F. Associations between problematic internet use and adolescents’ physical and psychological symptoms: possible role of sleep quality. J Addict Med. 2014;8(4):282–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30(7):870–88.PubMedCrossRefGoogle Scholar
  123. 123.
    Hui FK. Clearing your mind: a glymphatic system? World Neurosurg. 2015;83(5):715–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pahnke J, Langer O, Krohn M. Alzheimer’s and ABC transporters – new opportunities for diagnostics and treatment. Neurobiol Dis. 2014;72(Pt A):54–60.PubMedCrossRefGoogle Scholar
  126. 126.
    Porter VR, Buxton WG, Avidan AY. Sleep, cognition and dementia. Curr Psychiatry Rep. 2015;17(12):97.PubMedCrossRefGoogle Scholar
  127. 127.
    Tsapanou A, Gu Y, Manly J, Schupf N, Tang MX, Zimmerman M, et al. Daytime sleepiness and sleep inadequacy as risk factors for dementia. Dement Geriatr Cogn Dis Extra. 2015;5(2):286–95.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Guarnieri B, Sorbi S. Sleep and cognitive decline: a strong bidirectional relationship. It is time for specific recommendations on routine assessment and the management of sleep disorders in patients with mild cognitive impairment and dementia. Eur Neurol. 2015;74(1–2):43–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Cross N, Terpening Z, Rogers NL, Duffy SL, Hickie IB, Lewis SJ, et al. Napping in older people ‘at risk’ of dementia: relationships with depression, cognition, medical burden and sleep quality. J Sleep Res. 2015;24(5):494–502.PubMedCrossRefGoogle Scholar
  130. 130.
    Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kotagal S. Seminars in pediatric neurology. Sleep-wake disorders of childhood. Introduction. Semin Pediatr Neurol. 2008;15(2):41.PubMedCrossRefGoogle Scholar
  133. 133.
    Tassinari CA, Cantalupo G, Hogl B, Cortelli P, Tassi L, Francione S, et al. Neuroethological approach to frontolimbic epileptic seizures and parasomnias: the same central pattern generators for the same behaviours. Rev Neurol. 2009;165(10):762–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Tassinari CA, Rubboli G, Gardella E, Cantalupo G, Calandra-Buonaura G, Vedovello M, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach. Neurol Sci. 2005;26 Suppl 3:s225–32.PubMedCrossRefGoogle Scholar
  135. 135.
    Pugin F, Metz AJ, Wolf M, Achermann P, Jenni OG, Huber R. Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents. Sleep. 2015;38(4):607–14.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Fisher SP, Vyazovskiy VV. Local sleep taking care of high-maintenance cortical circuits under sleep restriction. Sleep. 2014;37(11):1727–30.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Mascetti L, Muto V, Matarazzo L, Foret A, Ziegler E, Albouy G, et al. The impact of visual perceptual learning on sleep and local slow-wave initiation. J Neurosci Off J Soc Neurosci. 2013;33(8):3323–31.CrossRefGoogle Scholar
  138. 138.
    Nobili L, De Gennaro L, Proserpio P, Moroni F, Sarasso S, Pigorini A, et al. Local aspects of sleep: observations from intracerebral recordings in humans. Prog Brain Res. 2012;199:219–32.PubMedCrossRefGoogle Scholar
  139. 139.
    Drummond SP, Brown GG, Stricker JL, Buxton RB, Wong EC, Gillin JC. Sleep deprivation-induced reduction in cortical functional response to serial subtraction. Neuroreport. 1999;10(18):3745–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, et al. Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci. 2000;3(8):831–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Maquet P, Peigneux P, Laureys S, Boly M, Dang-Vu T, Desseilles M, et al. Memory processing during human sleep as assessed by functional neuroimaging. Rev Neurol. 2003;159(11 Suppl):6S27–9.PubMedGoogle Scholar
  142. 142.
    Corner MA. Sleep and the beginnings of behavior in the animal kingdom – studies of ultradian motility cycles in early life. Prog Neurobiol. 1977;8(4):279–95.PubMedCrossRefGoogle Scholar
  143. 143.
    Corner M. Ontogeny of brain sleep mechanisms. In: McGinty D, editor. Brain mechanisms of sleep. New York: Raven; 1985. p. 175–97.Google Scholar
  144. 144.
    Morrison AR. Paradoxical sleep without atonia. Arch Ital Biol. 1988;126(4):275–89.PubMedGoogle Scholar
  145. 145.
    Karlson K, Gall A, Mohns E, Seelke A, Blumberg M. The neural substrates of infant sleep in rats. PLoS Biol. 2005;3(5), e143.CrossRefGoogle Scholar
  146. 146.
    Bes F, Schulz H, Navelet Y, Salzarulo P. The distribution of slow-wave sleep across the night: a comparison for infants, children, and adults. Sleep. 1991;14(1):5–12.PubMedGoogle Scholar
  147. 147.
    Jenni OG, Borbely AA, Achermann P. Development of the nocturnal sleep electroencephalogram in human infants. Am J Physiol Regul Integr Comp Physiol. 2004;286(3):R528–38.PubMedCrossRefGoogle Scholar
  148. 148.
    Roffwarg H, Dement W, Fisher C. Preliminary observations of the sleep-wake pattern in neonates, infants, children, and adults. In: Harms E, editor. Problems of sleep and dreams in children. 2. New York: Macmillan; 1964. p. 60–72.Google Scholar
  149. 149.
    Passouant P, Cadilhac J, Delange M. The sleep of the newborn. Considerations on the period of ocular movements. Arch Fr Pediatr. 1965;22(9):1087–92.PubMedGoogle Scholar
  150. 150.
    Fukumoto M, Mochizuki N, Takeishi M, Nomura Y, Segawa M. Studies of body movements during night sleep in infancy. Brain Dev. 1981;3(1):37–43.PubMedCrossRefGoogle Scholar
  151. 151.
    Prechtl HF, Nijhuis JG. Eye movements in the human fetus and newborn. Behav Brain Res. 1983;10(1):119–24.PubMedCrossRefGoogle Scholar
  152. 152.
    Parmelee AH, Stern E, Harris MA. Maturation of respiration in prematures and young infants. Neuropadiatrie. 1972;3(3):294–304.PubMedCrossRefGoogle Scholar
  153. 153.
    Parmalee Jr A, Akiyama Y, Stern E, Harris M. A periodic cerebral rhythm in newborn infants. Exp Neurol. 1969;35:575.CrossRefGoogle Scholar
  154. 154.
    Scholle S, Schafer T. Atlas of states of sleep and wakefulness in infants and children. Somnologie. 1999;3:163–241.CrossRefGoogle Scholar
  155. 155.
    Becker PT, Thoman EB. Rapid eye movement storms in infants: rate of occurrence at 6 months predicts mental development at 1 year. Science. 1981;212(4501):1415–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Dreyfus-Brisac C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev Psychobiol. 1970;3(2):91–121.PubMedCrossRefGoogle Scholar
  157. 157.
    Eliet-Flescher J, Dreyfus-Brisac C. The sleep of the full-term newborn and premature infant. II. Electroencephalogram and chin muscle activity during maturation. Biol Neonatorum Neo-natal Stud. 1966;10(5):316–39.CrossRefGoogle Scholar
  158. 158.
    Schloon H, O’Brien MJ, Scholten CA, Prechtl HF. Muscle activity and postural behaviour in newborn infants. A polymyographic study. Neuropadiatrie. 1976;7(4):384–415.PubMedCrossRefGoogle Scholar
  159. 159.
    Curzi-Dascalova L, Peirano P, Morel-Kahn F. Development of sleep states in normal premature and full-term newborns. Dev Psychobiol. 1988;21(5):431–44.PubMedCrossRefGoogle Scholar
  160. 160.
    Salzaulo P. L’atonie msculaire pendant le sommeil chez l’homme. Riv Psicol. 1968;62:201–20.Google Scholar
  161. 161.
    Okai T, Kozuma S, Shinozuka N, Kuwabara Y, Mizuno M. A study on the development of sleep-wakefulness cycle in the human fetus. Early Hum Dev. 1992;29(1–3):391–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Curzi-Dascalova L, Figueroa JM, Eiselt M, Christova E, Virassamy A, d’Allest AM, et al. Sleep state organization in premature infants of less than 35 weeks’ gestational age. Pediatr Res. 1993;34(5):624–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Kahn A, Dan B, Groswasser J, Franco P, Sottiaux M. Normal sleep architecture in infants and children. J Clin Neurophysiol. 1996;13(3):184–97.PubMedCrossRefGoogle Scholar
  164. 164.
    Parmelee Jr AH, Wenner WH, Akiyama Y, Schultz M, Stern E. Sleep states in premature infants. Dev Med Child Neurol. 1967;9(1):70–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Andre M, Lamblin MD, d’Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, S Nguyen The T, et al. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiologie clinique = Clinical neurophysiology. 2010;40(2):59–124.PubMedCrossRefGoogle Scholar
  166. 166.
    MacLean JE, Fitzgerald DA, Waters KA. Developmental changes in sleep and breathing across infancy and childhood. Paediatr Respir Rev. 2015;16:276–84.PubMedGoogle Scholar
  167. 167.
    Grigg-Damberger M, Gozal D, Marcus CL, Quan SF, Rosen CL, Chervin RD, et al. The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2007;3(2):201–40.Google Scholar
  168. 168.
    Louis J, Zhang J, Revol M, et al. Ontogenesis of nocturnal organization of sleep spindles: a longitudinal study during the first six months of life. Electroencephalogr Clin Neurophysiol. 1992;83:289–96.PubMedCrossRefGoogle Scholar
  169. 169.
    Iglowstein I, Jenni OG, Molinari L, Largo RH. Sleep duration from infancy to adolescence: reference values and generational trends. Pediatrics. 2003;111(2):302–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Lutter WJ, Maier M, Wakai RT. Development of MEG sleep patterns and magnetic auditory evoked responses during early infancy. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2006;117(3):522–30.CrossRefGoogle Scholar
  171. 171.
    Danker-Hopfe H. Growth and development of children with a special focus on sleep. Prog Biophys Mol Biol. 2011;107(3):333–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Hughes JR. The development of the vertex sharp transient. Clin Electroencephalogr. 1998;29(4):183–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Werner SS, Stockard JE, Bickford RG. The ontogenesis of the electroencephalogram of prematures. Atlas of neonatal electroencephalography. 1st ed. New York City: Raven; 1977. p. 47–91.Google Scholar
  174. 174.
    Kellaway P, Fox BJ. Electroencephalographic diagnosis of cerebral pathology in infants during sleep. I. Rationale, technique, and the characteristics of normal sleep in infants. J Pediatr. 1952;41(3):262–87.PubMedCrossRefGoogle Scholar
  175. 175.
    Kellaway P. Ontogenetic evolution of the electrical activity of the brain in man and animal. Acta Med Belg. 1957:141–54.Google Scholar
  176. 176.
    Anders T, Emde R, Parmelee A. A manual of standardized terminology, techniques and criteria for scoring states of sleep and wakefulness in newborn infants. Los Angeles: UCLA Brain Information Service, NINDS Neurological information Network; 1971.Google Scholar
  177. 177.
    Metcalf DR, Mondale J, Butler FK. Ontogenesis of spontaneous K-complexes. Psychophysiology. 1971;8(3):340–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Fisch BJ. Fisch and Spehlmann’s EEG Primer. 3rd printing revised and enlarged ed. New York: Elsevier; 2002. 621 p.Google Scholar
  179. 179.
    Halasz P. K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev. 2005;9(5):391–412.PubMedCrossRefGoogle Scholar
  180. 180.
    Niedermeyer E. In: Niedermeyer E, Lopes da Silva F, editors. Electroencephalography: basic principles, clinical applications and related fields. 4th ed. Philadelpha: Lippincott, Williams and Wilkins; 1999. p. 189–214.Google Scholar
  181. 181.
    Ferber R. In: Ferber R, Kryger M, editors. Introduction to pediatric sleep disorders medicine. Philadelphia: W.B. Saunders; 1995. Pg. 1 p.Google Scholar
  182. 182.
    Schechtman VL, Harper RM. The maturation of correlations between cardiac and respiratory measures across sleep states in normal infants. Sleep. 1992;15(1):41–7.PubMedGoogle Scholar
  183. 183.
    Coons S, Guilleminault C. Development of sleep-wake patterns and non-rapid eye movement sleep stages during the first six months of life in normal infants. Pediatrics. 1982;69(6):793–8.PubMedGoogle Scholar
  184. 184.
    Salzarulo P, Fagioli I, Salomon F, Ricour C, Raimbault G, Ambrosi S, et al. Sleep patterns in infants under continuous feeding from birth. Electroencephalogr Clin Neurophysiol. 1980;49(3–4):330–6.PubMedCrossRefGoogle Scholar
  185. 185.
    Liefting B, Bes F, Fagioli I, Salzarulo P. Electromyographic activity and sleep states in infants. Sleep. 1994;17(8):718–22.PubMedGoogle Scholar
  186. 186.
    Ficca G, Fagioli I, Salzarulo P. Sleep organization in the first year of life: developmental trends in the quiet sleep-paradoxical sleep cycle. J Sleep Res. 2000;9(1):1–4.PubMedCrossRefGoogle Scholar
  187. 187.
    Hoppenbrouwers T, Hodgman JE, Harper RM, Sterman MB. Temporal distribution of sleep states, somatic activity, and autonomic activity during the first half year of life. Sleep. 1982;5(2):131–44.PubMedGoogle Scholar
  188. 188.
    Samson-Dolfuss D, Nogues B, Verdure-Poussin A, Mallevile F. Electroencephalogramme du sommeil de l’enfant normal entre 5 mois et 3 ans. Rev EEG Neurophysiol. 1977;7:335–45.Google Scholar
  189. 189.
    Lenard H. The development of sleep behavior in babies and small children. Electrocephalogr Clin Neurophysiol. 1972;32:710.Google Scholar
  190. 190.
    Tanguay PE, Ornitz EM, Kaplan A, Bozzo ES. Evolution of sleep spindles in childhood. Electroencephalogr Clin Neurophysiol. 1975;38(2):175–81.PubMedCrossRefGoogle Scholar
  191. 191.
    Brandt S, Brandt H. The electroencephalographic patterns in young healthy children from 0 to five years of age; their practical use in daily clinical electroencephalography. Acta Psychiatr Neurol Scand. 1955;30(1–2):77–89.PubMedCrossRefGoogle Scholar
  192. 192.
    Gibbs EL, Lorimer FM, Gibbs FA. Clinical correlates of exceedingly fast activity in the electroencephalogram. Dis Nerv Syst. 1950;11(11):323–6.PubMedGoogle Scholar
  193. 193.
    Dale PW, Busse EW. An elaboration of a distinctive EEG pattern found during drowsy states in children. Dis Nerv Syst. 1951;12(4):122–5.PubMedGoogle Scholar
  194. 194.
    Westmoreland B, Stockard J. The EEG in infants and children: normal patterns. Am J EEG Technol. 1977;17(4):187–207.Google Scholar
  195. 195.
    Sheldon S. Evaluating sleep in infants and children. Evaluating sleep in infants and children. Philadelphia: Lippincott-Raven; 1996. p. 228.Google Scholar
  196. 196.
    Nekhorocheff I. Electroencephalogram of sleep in children. Rev Neurol (Paris). 1950;82(6):487–95.Google Scholar
  197. 197.
    Hess R. The electroencephalogram in sleep. Electroencephalogr Clin Neurophysiol. 1964;16:44–55.PubMedCrossRefGoogle Scholar
  198. 198.
    Niedermeyer E. Sleep and EEG. In: Niedermeyer E, Lopes da Silva F, editors. Electroencephalography: basic principles, clinical applications, and related fields. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2005.Google Scholar
  199. 199.
    Sheldon SH. Development of sleep in infants and children. In: Sheldon SH, Ferber R, Kryger MH, Gozal D, editors. Principles and practice of pediatric sleep medicine. 2nd ed. London: Elsevier Saunders; 2014. p. 17–24.Google Scholar
  200. 200.
    Lamblin MD, Walls Esquivel E, Andre M. The electroencephalogram of the full-term newborn: review of normal features and hypoxic-ischemic encephalopathy patterns. Neurophysiol Clin Clin Neurophysiol. 2013;43(5–6):267–87.CrossRefGoogle Scholar
  201. 201.
    Monod N, Pajot N. The sleep of the full-term newborn and premature infant. I. Analysis of the polygraphic study (rapid eye movements, respiration and E.E.G.) in the full-term newborn. Biologia neonatorum Neo-natal studies. 1965;8(5):281–307.PubMedCrossRefGoogle Scholar
  202. 202.
    Galland BC, Taylor BJ, Elder DE, Herbison P. Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med Rev. 2012;16(3):213–22.PubMedCrossRefGoogle Scholar
  203. 203.
    Schulz H, Salzarulo P, Fagioli I, Massetani R. REM latency: development in the first year of life. Electroencephalogr Clin Neurophysiol. 1983;56(4):316–22.PubMedCrossRefGoogle Scholar
  204. 204.
    Anders TF, Keener M. Developmental course of nighttime sleep-wake patterns in full-term and premature infants during the first year of life. I. Sleep. 1985;8(3):173–92.PubMedGoogle Scholar
  205. 205.
    Coons S. In: Guilleminault C, editor. Development of sleep and wakefulness during the first 6 months of life. New York: Raven Press; 1987. p. 7–27.Google Scholar
  206. 206.
    Scholle S, Beyer U, Bernhard M, Eichholz S, Erler T, Graness P, et al. Normative values of polysomnographic parameters in childhood and adolescence: quantitative sleep parameters. Sleep Med. 2011;12(6):542–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Campbell IG, Darchia N, Higgins LM, Dykan IV, Davis NM, de Bie E, et al. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. Sleep. 2011;34(1):83–91.PubMedPubMedCentralGoogle Scholar
  208. 208.
    McMillen IC, Kok JS, Adamson TM, Deayton JM, Nowak R. Development of circadian sleep-wake rhythms in preterm and full-term infants. Pediatr Res. 1991;29(4 Pt 1):381–4.PubMedCrossRefGoogle Scholar
  209. 209.
    Erren TC, Trautmann K, Salz MM, Reiter RJ. Newborn intensive care units and perinatal healthcare: on light’s imprinting role on circadian system stability for research and prevention. J Perinatol Off J Calif Perinat Assoc. 2013;33(10):824–5.CrossRefGoogle Scholar
  210. 210.
    Tsai SY, Thomas KA, Lentz MJ, Barnard KE. Light is beneficial for infant circadian entrainment: an actigraphic study. J Adv Nurs. 2012;68(8):1738–47.PubMedCrossRefGoogle Scholar
  211. 211.
    Sandor P, Szakadat S, Bodizs R. Ontogeny of dreaming: a review of empirical studies. Sleep Med Rev. 2014;18(5):435–49.PubMedCrossRefGoogle Scholar
  212. 212.
    Schredl M, Fricke-Oerkermann L, Mitschke A, Wiater A, Lehmkuhl G. Longitudinal study of nightmares in children: stability and effect of emotional symptoms. Child Psychiatry Hum Dev. 2009;40(3):439–49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of New Mexico School of MedicineAlbuquerqueUSA

Personalised recommendations