Alignment of Tractograms as Linear Assignment Problem

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Diffusion magnetic resonance imaging (dMRI) offers a unique approach to study the structural connectivity of the brain. DMRI allows to reconstruct the 3D pathways of axons within the white matter as a set of polylines (streamlines), called the tractogram. Tractograms of different brains need to be aligned in a common representation space for various purposes, such as group-analysis, segmentation or atlas construction. Typically, such alignment is obtained with affine registration, through which tractograms are globally transformed, with the limit of not reconciling local differences. In this paper, we propose to improve registration-based alignment by what we call mapping. The goal of mapping is to find the correspondence between streamlines across brains, i.e. to find the map of which streamline in one tractogram correspond to which streamline in the other tractogram. We frame the mapping problem as a rectangular linear assignment problem (RLAP), a cornerstone of combinatorial optimization. We adopt a variant of the famous Hungarian method to get the optimal solution of the RLAP. We validate the proposed method with a tract alignment application, where we register two tractograms and, given one anatomical tract, we segment the corresponding one in the other tractogram. On dMRI data from the Human Connectome Project, we provide experimental evidence that mapping, implemented as a RLAP, can vastly improve both the true positive rate and false discovery rate of registration-based alignment, establishing a strong argument in favor of what we propose. We conclude by discussing the limitations of the current approach, which gives perspective for future work.

References

  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). http://dx.doi.org/10.1016/s0006-3495(94)80775-1 CrossRefGoogle Scholar
  2. 2.
    Bijsterbosch, J., Volgenant, A.: Solving the rectangular assignment problem and applications. Ann. Oper. Res. (2010). http://dx.doi.org/10.1007/s10479-010-0757-3 MATHGoogle Scholar
  3. 3.
    Bourgeois, F., Lassalle, J.C.: An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM 14(12), 802–804 (1971)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, 2nd edn. (2012). http://dx.doi.org/10.1137/1.9781611972238
  5. 5.
    Catani, M., Allin, M.P.G., Husain, M., Pugliese, L., Mesulam, M.M., Murray, R.M., Jones, D.K.: Symmetries in human brain language pathways correlate with verbal recall. Proc. Natl. Acad. Sci. 104(43), 17163–17168 (2007)CrossRefGoogle Scholar
  6. 6.
    Garyfallidis, E., Wassermann, D., Descoteaux, M.: Direct native-space fiber bundle alignment for group comparisons. In: International Society for Magnetic Resonance Imaging (ISMRM). Milan, Italy (2014). https://hal.inria.fr/hal-00991740
  7. 7.
    Golding, D., Tittgemeyer, M., Anwander, A., Douglas, T.: A comparison of methods for the registration of tractographic fibre images. In: Robinson, P., Nel, A. (eds.) Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa, pp. 55–59 (2011)Google Scholar
  8. 8.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11516708 CrossRefGoogle Scholar
  9. 9.
    Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987). http://dx.doi.org/10.1007/bf02278710 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (1955). http://dx.doi.org/10.1002/nav.3800020109 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nguyen, T.B., Olivetti, E., Avesani, P.: Mapping tractography across subjects (2014). 4th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (MLINI). Accepted (forthcoming)Google Scholar
  13. 13.
    O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.F.F.: Unbiased groupwise registration of white matter tractography. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI - International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 15(Pt 3), pp. 123–130 (2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638882/ Google Scholar
  14. 14.
    Raffelt, D., Tournier, J.D., Fripp, J., Crozier, S., Connelly, A., Salvado, O.: Symmetric diffeomorphic registration of fibre orientation distributions. NeuroImage (2011). http://dx.doi.org/10.1016/j.neuroimage.2011.02.014JD
  15. 15.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.: WU-Minn HCP consortium: advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013). http://view.ncbi.nlm.nih.gov/pubmed/23702418 CrossRefGoogle Scholar
  16. 16.
    Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The Wu-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  17. 17.
    Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., Westin, C.F.F.: On describing human white matter anatomy: the white matter query language. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI - International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 16(Pt 1), pp. 647–654 (2013). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029160/ Google Scholar
  18. 18.
    Zhang, S., Correia, S., Laidlaw, D.H.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Trans. Vis. Comput. Graph. 14(5), 1044–1053 (2008). http://dx.doi.org/10.1109/tvcg.2008.52 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nusrat Sharmin
    • 1
    • 2
  • Emanuele Olivetti
    • 1
    • 2
  • Paolo Avesani
    • 1
    • 2
  1. 1.NeuroInformatics Laboratory (NILab)Bruno Kessler FoundationTrentoItaly
  2. 2.Center for Mind and Brain Sciences (CIMeC)University of TrentoTrentoItaly

Personalised recommendations