Advertisement

“The End of Proof”? The Integration of Different Mathematical Cultures as Experimental Mathematics Comes of Age

  • Henrik Kragh Sørensen
Conference paper
Part of the Trends in the History of Science book series (TRENDSHISTORYSCIENCE)

Abstract

In this paper, the recent emergence of a professed “experimental” culture in mathematics during the past three decades is analysed based on an adaptation of Hans-Jörg Rheinberger’s notion of “experimental systems” that mesh into experimental cultures. In so doing, I approach the question of how distinct mathematical cultures can coexist and blend into a common understanding that allows for cultural convergence while preserving heterogeneity.

Keywords

Experimental mathematics Computer-assisted mathematics Experimental systems Rheinberger Convergent cultures 

MSC (2010)

00A30 (General: philosophy of mathematics) 01A60 (History and biography: 20th century) 01A61 (History and biography: twenty-first century) 

Notes

Acknowledgment

I am grateful for the excellent suggestions made by colleagues at the Centre for Science Studies and by participants in the “Mathematical Cultures” series of conferences. Some of this research has been presented in Sørensen (2010a) and Sørensen (2013).

References

  1. Andersen, L. E., Sørensen, H. K. and the PCSP group. (2014). Contemporary mathematics in practice: Social epistemology in the light of unsurveyability in mathematics. In preparation.Google Scholar
  2. Andrews, G. E. (1994). The death of proof? Semi-rigorous Mathematics? You’ve got to be kidding! The mathematical intelligencer, 16(4), 16–18.MathSciNetzbMATHGoogle Scholar
  3. Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Part II: reducibility. Illinois Journal of Mathematics, 21(3), 491–567.MathSciNetzbMATHGoogle Scholar
  4. Arnold, D. N., & Cohn, H. (2012). Mathematicians take a stand. Notices of the AMS, 59(6), 828–833.Google Scholar
  5. Atiyah, M., et al. (1994). Responses to “theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics”, by A. Jaffe and F. Quinn. Bulletin of the American Mathematical Society, 30(2), 178–207.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Avigad, J. (2008). “Computers in mathematical inquiry”. In P. Mancosu (Ed.), The philosophy of mathematical practice (Chap. 11, pp. 302–316.). Oxford: Oxford University Press.Google Scholar
  7. Bailey, D. H., & Borwein, J. M. (2011). Exploratory experimentation and computation. Notices of the AMS, 58(10), 1410–1419.MathSciNetzbMATHGoogle Scholar
  8. Bailey, D. H., Borwein, J. M., et al. (August 28, 2014). Opportunities and challenges in 21st century experimental mathematical computation: ICERM workshop report. URL http://www.davidhbailey. com/dhbpapers/ICERM-2014.pdf (visited on 10/19/2014).
  9. Baker, A. (2008). Experimental Mathematics. Erkenntnis, 68(3), 331–344.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Billey, S. C., & Tenner, B. E. (2013). Fingerprint databases for theorems. Notices of the AMS, 60(8), 1034–1039.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Borwein, J. M. (2012). Exploratory experimentation: Digitally-assisted discovery and proof. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education. The 19th ICMI study (Chap. 4, pp. 69–96). New ICMI Study Series 15. Berlin: Springer.Google Scholar
  12. Borwein, J., & Bailey, D. (2004). Mathematics by experiment: Plausible reasoning in the 21st century. Natick (MA): A K Peters.zbMATHGoogle Scholar
  13. Borwein, J., Bailey, D., & Girgensohn, R. (2004). Experimentation in mathematics: Computational paths to discovery. Natick (MA): A K Peters.zbMATHGoogle Scholar
  14. Borwein, J., Borwein, P., et al. (1996). Making sense of experimental mathematics. The mathematical intelligencer, 18(4), 12–18.MathSciNetzbMATHGoogle Scholar
  15. Borwein, J. M., & Jungić, V. (2012). Organic mathematics: Then and now. Notices of the AMS, 59(3), 416–419.zbMATHGoogle Scholar
  16. Britz, T., & Rutherford, C. G. (2005). Covering radii are not matroid invariants. Discrete Mathematics, 296, 117–120.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Campbell, D., et al. (1985). Experimental mathematics: The role of computation in nonlinear science. Communications of the ACM, 28(4), 374–384.MathSciNetCrossRefGoogle Scholar
  18. Colton, S. (2007). Computational discovery in pure mathematics. In S. Dz̆eroski & L. Todorovski Computational discovery (pp. 175–201). Heidelberg: Springer.Google Scholar
  19. Cox, D. A. (1985). Gauss and the arithmetic-geometric mean. Notices of the AMS, 32(2), 147–151.MathSciNetGoogle Scholar
  20. Cranshaw, J., & Kittur, A. (2011). The polymath project: Lessons from a successful online collaboration in mathematics. In Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems (pp. 1865–1874). CHI ’11. Vancouver, BC, Canada: ACM.Google Scholar
  21. Detlefsen, M., & Luker, M. (1980). The four-color theorem and mathematical proof. The Journal of Philosophy, 77(12), 803–820.CrossRefGoogle Scholar
  22. Epple, M. (2001). Matematikkhistoriens former: Genier, ideer, institusjoner, matematiske verksteder - et metahistorisk essay. ARR Idéhistorisk Tidsskrift, 1–2, 94–108.Google Scholar
  23. Epple, M. (2004). Knot invariants in Vienna and Princeton during the 1920s: Epistemic configurations of mathematical research. Science in Context, 17(1/2), 131–164.Google Scholar
  24. Epple, M. (2011). Between timelessness and historiality: On the dynamics of the epistemic objects of mathematics. Isis, 102(3), 481–493.Google Scholar
  25. Epstein, D., & Levy, S. (2000). To the reader. Experimental Mathematics, 9(1), 1.MathSciNetCrossRefGoogle Scholar
  26. Epstein, D., Levy, S., & de la Llave, R. (1992). About this journal. Experimental Mathematics, 1(1), 1–3.Google Scholar
  27. Gieryn, T. (1996). Review of Andrew Pickering, ‘The Mangle of Practice’, Chicago: University of Chicago Press, 1995. American Journal of Sociology, 102(2), 599–601.CrossRefGoogle Scholar
  28. Goldstein, L. J. (1973). A history of the prime number theorem. The American Mathematical Monthly, 80(6), 599–615.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Gowers, W. T. (2000). The two cultures of mathematics. In V. Arnold et al. [s.l.] (Ed.), Mathematics: Frontiers and perspectives (pp. 65–78). American Mathematical Society.Google Scholar
  30. Gowers, T., Nielsen, M. (October 15, 2009). Massively collaborative mathematics. Nature, 461, 879–881.Google Scholar
  31. Hacking, I. (1992). ‘Style’ for historians and philosophers. Studies in the History and Philosophy of Science, 23(1), 1–20.MathSciNetCrossRefGoogle Scholar
  32. Haspel, C., & Vasquez, A. (1982). Experimental mathematics using APL and graphics. APL ’82: Proceedings of the international conference on APL (pp. 121–127). Heidelberg, Germany: ACM.CrossRefGoogle Scholar
  33. Hassink, L., & Clark, D. (2012). Elsevier’s response to the mathematics community. Notices of the AMS, 59(6), 833–835.Google Scholar
  34. Heintz, B. (2000a). Die Innenwelt der Mathematik. Zur Kultur und Praxis einer beweisenden Disziplin. Wien and New York: Springer.CrossRefGoogle Scholar
  35. Heintz, B. (2000b). In der Mathematik ist ein Streit mit Sicherheit zu entscheiden. Perspektiven einer Soziologie der Mathematik”. Zeitschrift für Soziologie, 29(5), 339–360.Google Scholar
  36. Horgan, J. (1993). The death of proof. Scientific American, 269(4), 74–82.MathSciNetCrossRefGoogle Scholar
  37. Horgan, J. (1996). The end of science: Facing the limits of knowledge in the twilight of the scientific age. Helix Books. Reading (Mass) etc.: Addison-Wesley Publishing Company, Inc.Google Scholar
  38. Jaffe, A., & Quinn, F. (April 1994). Response to comments on “Theoretical mathematics”. Bulletin of the American Mathematical Society, 30(2), 208–211.Google Scholar
  39. Jaffe, A., & Quinn, F. (1993). “Theoretical mathematics”: Toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 29(1), 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Kitcher, P. (1985). The nature of mathematical knowledge. Oxford: Oxford University Press.CrossRefzbMATHGoogle Scholar
  41. Knorr Cetina, K. (1999). Epistemic cultures. How the sciences make knowledge. Cambridge (Mass) and London: Harvard University Press.Google Scholar
  42. Kohlhase, M. (2014). Mathematical knowledge management: Transcending the management: Transcending the one-brain-barrier with theory graphs. Newsletter of the European Mathematical Society, 92, 22–27.MathSciNetzbMATHGoogle Scholar
  43. Lam, C. W., Thiel, L., & Swiercz, S. (1989). The non-existence of finite projective planes of order 10. Canadian Journal Mathematics, 41(6), 1117–1123.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Lenoir, T. (1997). Instituting science. The cultural production of scientific disciplines. Writing Science. Stanford: Stanford University Press.Google Scholar
  45. MacKenzie, D. (2005). Computing and the cultures of proving. Philosophical Transactions of The Royal Society, A, 363, 2335–2350.MathSciNetCrossRefzbMATHGoogle Scholar
  46. Mancosu, P. (2010). Mathematical style. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Spring 2010. URL http://plato.stanford.edu/archives/spr2010/entries/mathematicalstyle/
  47. Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco: W. H. Freeman and Company.zbMATHGoogle Scholar
  48. Marden, A. (1997). Fred Almgren and the geometry center. Experimental Mathematics, 6(1), 11–12.MathSciNetCrossRefGoogle Scholar
  49. Mayhew, D., & Royle, G. F. (2008). Matroids with nine elements. Journal of Combinatorial Theory. B, 98, 415–431.MathSciNetCrossRefzbMATHGoogle Scholar
  50. McEvoy, M. (2008). The epistemological status of computer-assisted proofs. Philosophia Mathematica (3), 16, 374–387.Google Scholar
  51. McEvoy, M. (February 2013). Experimental mathematics, computers and the a priori. Synthese, 190(3), 397–412.Google Scholar
  52. Medawar, P. B. (1979). Advice to a Young scientist. San Francisco: Harper & Row.Google Scholar
  53. Nathanson, M. B. (2011). One, two, many: Individuality and collectivity in mathematics. The mathematical intelligencer, 33(1), 5–8.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Odlyzko, A. M. (1995). Tragic loss or good riddance? The impending demise of traditional scholarly journals. Notices of the AMS, 42(1), 49–53.Google Scholar
  55. Pease, A., & Martin, U. (2012). Seventy four minutes of mathematics: An analysis of the third Mini-Polymath project. In Proceedings of AISB/IACAP 2012, Symposium on Mathematical Practice and Cognition II.Google Scholar
  56. Pickering, A. (Ed.). (1992). Science as practice and culture. Chicago & London: University of Chicago Press.Google Scholar
  57. Pickering, A. (Ed.). (1995). The mangle of practice. Chicago: University of Chicago Press.Google Scholar
  58. Pólya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). New York: Garden City Doubleday Anchor Books.zbMATHGoogle Scholar
  59. Quinn, F. (1995). Roadkill on the electronic highway: The threat to the mathematical literature. Notices of the AMS, 42(1), 53–56.Google Scholar
  60. Rheinberger, H.-J. (1997). Toward a history of epistemic things. Synthesizing proteins in the test tube. Writing science. Stanford: Stanford University Press.Google Scholar
  61. Rheinberger, H.-J. (October 2012). From experimental systems to cultures of experimentation: Historical reflections. Unpublished manuscript of talk given in Aarhus, September 24, 2012.Google Scholar
  62. Sarvate, D., Wetzel, S., & Patterson, W. (2011). Analyzing massively collaborative mathematics projects. The Mathematical Intelligencer, 33(1), 9–18.MathSciNetCrossRefzbMATHGoogle Scholar
  63. Sloane, N. J. A. (2003). The on-line encyclopedia of integer sequences. Notices of the AMS, 50(8), 912–915.MathSciNetzbMATHGoogle Scholar
  64. Snow, C. P. (1959/1993). The two cultures. In S. Collini (Ed.), With an intro. Cambridge: Cambridge University Press.Google Scholar
  65. Sørensen, H. K. (2010a). Experimental mathematics in the 1990s: A second loss of certainty? Oberwolfach Reports, No., 12, 601–604.Google Scholar
  66. Sørensen, H. K. (2010b). Exploratory experimentation in experimental mathematics: A glimpse at the PSLQ algorithm. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice. Texts in philosophy 11 (pp. 341–360). London: College Publications. URL http://www.lib.uni-bonn.de/PhiMSAMP/Book/.
  67. Sørensen, H. K. (2013). Er det matematiske bevis ved at dø ud? In O. Høiris (Ed.), Fremtiden (pp. 99–132). Aarhus: Aarhus Universitetsforlag.Google Scholar
  68. Stöltzner, M. (2005). Theoretical mathematics: On the philosophical significance of the Jaffe-Quinn debate. In G. Boniolo, P. Budinich, M. Trobok (Eds.), The role of mathematics in the physical sciences. Interdisciplinary and philosophical aspects (pp. 197–222). Dordrecht: Springer.Google Scholar
  69. Swart, E. R. (1980). The philosophical implications of the four-colour problem. The American Mathematical Monthly, 87(9), 697–707.MathSciNetCrossRefzbMATHGoogle Scholar
  70. Sze, T.-W. (2010). The two quadrillionth bit of Pi is 0! Distributed computation of Pi with Apache Hadoop”. CoRR, vol. abs/1008.3171. URL http://arxiv.org/abs/1008.3171
  71. The flyspeck project fact sheet. URL http://code.google.com/p/flyspeck/wiki/FlyspeckFactSheet (visited on October 23, 2014).
  72. Tymoczko, T. (February 1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76(2), 57–83. URL http://www.jstor.org/stable/2025976.
  73. Van Kerkhove, B., & Van Bendegem, J. P. (2008). Pi on earth, or mathematics in the real world. Erkenntnis, 68(3), 421–435.MathSciNetCrossRefzbMATHGoogle Scholar
  74. Zeilberger, D. (1994). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. The mathematical intelligencer, 16(4), 11–14, 76.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Science Studies, Department of MathematicsAarhus UniversityAarhusDenmark

Personalised recommendations