Integrated High-Content Quantification of Intracellular ROS Levels and Mitochondrial Morphofunction

  • Tom Sieprath
  • Tobias D. J. Corne
  • Peter H. G. M. Willems
  • Werner J. H. Koopman
  • Winnok H. De VosEmail author
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 219)


Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-content microscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells.


Reactive Oxygen Species Reactive Oxygen Species Level Intracellular Reactive Oxygen Species Reactive Nitrogen Species Increase Reactive Oxygen Species Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the University of Antwerp (TTBOF/UA_29267), the Special Research Fund of Ghent University (project BOF/11267/09), the Hercules Foundation (AUGE/ 013), NB-Photonics (Project code 01-MR0110), and the CSBR (Centers for Systems Biology Research) initiative from the Netherlands Organization for Scientific Research (NWO; No: CSBR09/013V).


  1. Archer SL (2013) Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. doi: 10.1056/NEJMra1215233 PubMedCrossRefGoogle Scholar
  2. Auchère F, Rusnak F (2002) What is the ultimate fate of superoxide anion in vivo? J Biol Inorg Chem 7:664–667. doi: 10.1007/s00775-002-0362-2 PubMedCrossRefGoogle Scholar
  3. Babior B (1999) NADPH oxidase: an update. Blood 93:1464–1476PubMedGoogle Scholar
  4. Back P, De Vos WH, Depuydt GG et al (2012) Free radical biology & medicine. Free Rad Biol Med 52:850–859. doi: 10.1016/j.freeradbiomed.2011.11.037 PubMedCrossRefGoogle Scholar
  5. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bartz RR, Piantadosi CA (2010) Clinical review: oxygen as a signaling molecule. Crit Care 14:234. doi: 10.1186/cc9185 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 87:245–313. doi: 10.1152/physrev.00044.2005 PubMedCrossRefGoogle Scholar
  8. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286. doi: 10.1038/nmeth866 PubMedCrossRefGoogle Scholar
  9. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732. doi: 10.1038/nrm2764 PubMedGoogle Scholar
  10. Bilan DS, Pase L, Joosen L et al (2013) HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem Biol 8:535–542. doi: 10.1021/cb300625g PubMedCrossRefGoogle Scholar
  11. Blanchet L, Smeitink JAM, van Emst-de Vries SE et al (2015) Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Sci Rep 5:8035. doi: 10.1038/srep08035 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bociąga-Jasik M, Polus A, Góralska J et al (2013) Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes. Pharmacol Rep 65:937–950PubMedCrossRefGoogle Scholar
  13. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta 1757:535–542. doi: 10.1016/j.bbabio.2006.02.010 PubMedCrossRefGoogle Scholar
  15. Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4. doi: 10.1016/j.mito.2011.02.001 PubMedCrossRefGoogle Scholar
  16. Cardoso AR, Chausse B, da Cunha FM et al (2012) Mitochondrial compartmentalization of redox processes. Free Rad Biol Med 52:2201–2208. doi: 10.1016/j.freeradbiomed.2012.03.008 PubMedCrossRefGoogle Scholar
  17. Caron M, Auclair M, Donadille B et al (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 14:1759–1767. doi: 10.1038/sj.cdd.4402197 PubMedCrossRefGoogle Scholar
  18. Casey JR (2006) Why bicarbonate? Biochem Cell Biol 84:930–939. doi: 10.1139/o06-184 PubMedCrossRefGoogle Scholar
  19. Castelein N, Muschol M, Dhondt I et al (2014) Experimental gerontology. EXG 56:26–36. doi: 10.1016/j.exger.2014.02.009 Google Scholar
  20. Chandra S, Mondal D, Agrawal KC (2009) HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone. Exp Biol Med (Maywood) 234:442–453. doi: 10.3181/0811-RM-317 CrossRefGoogle Scholar
  21. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393. doi: 10.1021/ja0441716 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chazotte B (2011) Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc 2011:990–992. doi: 10.1101/pdb.prot5648 PubMedGoogle Scholar
  23. Chen Z-H, Saito Y, Yoshida Y et al (2005) 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J Biol Chem 280:41921–41927. doi: 10.1074/jbc.M508556200 PubMedCrossRefGoogle Scholar
  24. Chiu C-C, Yeh T-H, Lai S-C et al (2015) Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol 263:244–253. doi: 10.1016/j.expneurol.2014.09.016 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chouchani ET, Methner C, Nadtochiy SM et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759. doi: 10.1038/nm.3212 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Conte Lo M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288:26480–26488. doi: 10.1074/jbc.R113.467738 CrossRefGoogle Scholar
  27. Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496. doi: 10.1074/jbc.R113.462929 PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Boer R, Smith RL, De Vos WH et al (2015) Caenorhabditis elegans as a model system for studying drug induced mitochondrial toxicity. PLoS One 10, e0126220. doi: 10.1371/journal.pone.0126220 PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Vos WH, Van Neste L, Dieriks B et al (2010) High content image cytometry in the context of subnuclear organization. Cytometry A 77:64–75. doi: 10.1002/cyto.a.20807 PubMedGoogle Scholar
  30. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511. doi: 10.1038/nchembio.607 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dickinson BC, Huynh C, Chang CJ (2010a) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132(16):5906–15PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dickinson BC, Srikun D, Chang CJ (2010b) Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol 14:50–56. doi: 10.1016/j.cbpa.2009.10.014 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8:1249–1259. doi: 10.1038/nprot.2013.064 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20:372–382. doi: 10.1089/ars.2012.4886 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36:280–290PubMedCrossRefGoogle Scholar
  36. Dong H, Cheung SH, Liang Y et al (2013) “Stainomics”: identification of mitotracker labeled proteins in mammalian cells. Electrophoresis 34:1957–1964. doi: 10.1002/elps.201200557 PubMedCrossRefGoogle Scholar
  37. Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293. doi: 10.1074/jbc.M312847200 PubMedCrossRefGoogle Scholar
  38. Drummen GPC, van Liebergen LCM, Op den Kamp JAF, Post JA (2002) C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Rad Biol Med 33:473–490. doi: 10.1016/S0891-5849(02)00848-1 PubMedCrossRefGoogle Scholar
  39. Dupre-Crochet S, Erard M, Nusse O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670. doi: 10.1189/jlb.1012544 PubMedCrossRefGoogle Scholar
  40. Estaquier J, Lelièvre J-D, Petit F et al (2002) Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4(+) T-cell death. J Virol 76:5966–5973PubMedPubMedCentralCrossRefGoogle Scholar
  41. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. doi: 10.1083/jcb.201102095 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Forkink M, Willems PHGM, Koopman WJH, Grefte S (2015) Live-cell assessment of mitochondrial reactive oxygen species using dihydroethidine. In: Methods in molecular biology. Springer, New York, pp 161–169Google Scholar
  43. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266:6–11. doi: 10.1016/j.canlet.2008.02.026 PubMedCrossRefGoogle Scholar
  44. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy - tips and tools. J Cell Sci 122:753–767. doi: 10.1242/jcs.033837 PubMedCrossRefGoogle Scholar
  45. Fujikawa M, Kobayashi K, Kozawa T (2012) Direct oxidation of the [2Fe-2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J Biol Chem 287:35702–35708. doi: 10.1074/jbc.M112.395079 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722A–728CrossRefGoogle Scholar
  47. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R (2009) Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46:241–281. doi: 10.3109/10408360903142326 PubMedCrossRefGoogle Scholar
  48. Glasbey CA (1993) An analysis of histogram-based thresholding algorithms. CVGIP Graph Model Image Proc 55:532–537CrossRefGoogle Scholar
  49. Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80. doi: 10.1016/j.jbbm.2005.10.003 PubMedCrossRefGoogle Scholar
  50. Gomes LC, Di Benedetto G, Scorrano L (2011) Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 10:2635–2639PubMedCrossRefGoogle Scholar
  51. Grek CL, Zhang J, Manevich Y et al (2013) Causes and consequences of cysteine S-glutathionylation. J Biol Chem 288:26497–26504. doi: 10.1074/jbc.R113.461368 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Groitl B, Jakob U (2014) Thiol-based redox switches. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics 1844:1335–1343. doi: 10.1016/j.bbapap.2014.03.007 CrossRefGoogle Scholar
  53. Gupta SC, Hevia D, Patchva S et al (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16:1295–1322. doi: 10.1089/ars.2011.4414 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gutscher M, Pauleau A-L, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559. doi: 10.1038/nmeth.1212 PubMedCrossRefGoogle Scholar
  55. Gutscher M, Sobotta MC, Wabnitz GH et al (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284:31532–31540. doi: 10.1074/jbc.M109.059246 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Halliwell B, Gutteridge J (2007) The chemistry of free radicals and related “reactive species.” In: Free Radicals in Biology and Medicine, 4 edn. Oxford University Press, New York, pp 30–78Google Scholar
  57. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513. doi: 10.1016/j.tibs.2010.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Han D, Antunes F, Canali R et al (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563. doi: 10.1074/jbc.M210269200 PubMedCrossRefGoogle Scholar
  59. Hanson GT, Aggeler R, Oglesbee D et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053. doi: 10.1074/jbc.M312846200 PubMedCrossRefGoogle Scholar
  60. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  61. Hu JJ, Wong N-K, Ye S et al (2015) Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J Am Chem Soc. doi: 10.1021/jacs.5b01881 Google Scholar
  62. Huang LK, Wang M (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recognit 28:41–51. doi: 10.1016/0031-3203(94)E0043-K CrossRefGoogle Scholar
  63. Iannetti EF, Willems PHGM, Pellegrini M et al (2015) Toward high-content screening of mitochondrial morphology and membrane potential in living cells. Int J Biochem Cell Biol. doi: 10.1016/j.biocel.2015.01.020 PubMedGoogle Scholar
  64. Invitrogen (2006) Reactive Oxygen Species (ROS) detection reagents. Invitrogen. 10 Jan 2006. Accessed 22 Apr 2015
  65. Koopman WJH, Verkaart S, van Emst-de Vries SE et al (2006) Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2 “,7 -”dichlorofluorescein. Cytom Part A 69A:1184–1192. doi: 10.1002/cyto.a.20348 CrossRefGoogle Scholar
  66. Koopman WJH, Verkaart S, Visch HJ et al (2007) Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? AJP: Cell Physiol 293:C22–C29. doi: 10.1152/ajpcell.00194.2006 Google Scholar
  67. Koopman WJH, Distelmaier F, Esseling JJ et al (2008) Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods 46:304–311. doi: 10.1016/j.ymeth.2008.09.018 PubMedCrossRefGoogle Scholar
  68. Koopman WJH, Nijtmans LGJ, Dieteren CEJ et al (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 12:1431–1470. doi: 10.1089/ars.2009.2743 PubMedCrossRefGoogle Scholar
  69. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18PubMedCrossRefGoogle Scholar
  70. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189. doi: 10.1038/nri1312 PubMedCrossRefGoogle Scholar
  71. Lebiedzinska M, Karkucinska-Wieckowska A, Giorgi C et al (2010) Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. Bba-Gen Subjects 1797:952–960. doi: 10.1016/j.bbabio.2010.03.005 Google Scholar
  72. Lopert P, Patel M (2014) Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. J Biol Chem 289:15611–15620. doi: 10.1074/jbc.M113.533653 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Loschen G, Azzi A, Richter C, Flohé L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72PubMedCrossRefGoogle Scholar
  74. Lukyanov KA, Belousov VV (2014) Biochimica et biophysica acta. BBA – General Subjects 1840:745–756. doi: 10.1016/j.bbagen.2013.05.030 PubMedCrossRefGoogle Scholar
  75. Mailloux RJ, McBride SL, Harper M-E (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38:592–602. doi: 10.1016/j.tibs.2013.09.001 PubMedCrossRefGoogle Scholar
  76. Marchi S, Giorgi C, Suski JM et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635. doi: 10.1155/2012/329635 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marí M, Morales A, Colell A et al (2013) Mitochondrial glutathione: features, regulation and role in disease. Bba-Gen Subjects 1830:3317–3328. doi: 10.1016/j.bbagen.2012.10.018 CrossRefGoogle Scholar
  78. Markvicheva KN, Bilan DS, Mishina NM et al (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19:1079–1084. doi: 10.1016/j.bmc.2010.07.014 PubMedCrossRefGoogle Scholar
  79. Matarrese P, Gambardella L, Cassone A et al (2003) Mitochondrial membrane hyperpolarization hijacks activated T lymphocytes toward the apoptotic-prone phenotype: homeostatic mechanisms of HIV protease inhibitors. J Immunol 170:6006–6015PubMedCrossRefGoogle Scholar
  80. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Sign 13:621–650. doi: 10.1089/ars.2009.2948 CrossRefGoogle Scholar
  81. Miller EW, Tulyathan O, Tulyanthan O et al (2007) Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol 3:263–267. doi: 10.1038/nchembio871 PubMedCrossRefGoogle Scholar
  82. Mishina NM, Bogeski I, Bolotin DA et al (2012) Can we see PIP3 and hydrogen peroxide with a single probe? Antioxid Redox Signal 17:505–512. doi: 10.1089/ars.2012.4574 PubMedCrossRefGoogle Scholar
  83. Miwa S, Brand MD (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans 31:1300–1301PubMedCrossRefGoogle Scholar
  84. Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429. doi: 10.1002/mus.20743 PubMedCrossRefGoogle Scholar
  85. Muchir A, van Engelen B, Lammens M et al (2003) Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp Cell Res 291:352–362. doi: 10.1016/j.yexcr.2003.07.002 PubMedCrossRefGoogle Scholar
  86. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi: 10.1042/BJ20081386 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476–495. doi: 10.1089/ars.2011.4289 PubMedCrossRefGoogle Scholar
  88. Naderi W, Lopez C, Pandey S (2006) Chronically increased oxidative stress in fibroblasts from Alzheimer's disease patients causes early senescence and renders resistance to apoptosis by oxidative stress. Mech Ageing Dev 127:25–35. doi: 10.1016/j.mad.2005.08.006 PubMedCrossRefGoogle Scholar
  89. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486. doi: 10.1038/cdd.2011.65 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol 13:349–361. doi: 10.1038/nri3423 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol 810:119–133. doi: 10.1007/978-1-61779-382-0_8 PubMedCrossRefGoogle Scholar
  92. Pastore A, Piemonte F (2012) S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 46:279–292. doi: 10.1016/j.ejps.2012.03.010 PubMedCrossRefGoogle Scholar
  93. Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures. EXS 131–157Google Scholar
  94. Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684. doi: 10.1074/jbc.M110.159962 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Prime TA, Forkink M, Logan A et al (2012) A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells. Free Rad Biol Med 53:544–553. doi: 10.1016/j.freeradbiomed.2012.05.033 PubMedCrossRefGoogle Scholar
  96. Rabut G, Ellenberg J (2004) Automatic real-time three-dimensional cell tracking by fluorescence microscopy. J Microsc 216:131–137. doi: 10.1111/j.0022-2720.2004.01404.x PubMedCrossRefGoogle Scholar
  97. Radi R, Cassina A, Hodara R et al (2002) Peroxynitrite reactions and formation in mitochondria. Free Rad Biol Med 33:1451–1464PubMedCrossRefGoogle Scholar
  98. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108:10190–10195. doi: 10.1073/pnas.1107402108 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rasmussen HH, Hamilton EJ, Liu C-C, Figtree GA (2010) Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc Med 20:85–90. doi: 10.1016/j.tcm.2010.06.002 PubMedCrossRefGoogle Scholar
  100. Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287:4403–4410. doi: 10.1074/jbc.R111.283432 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Riahi Y, Cohen G, Shamni O, Sasson S (2010) Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab 299:E879–E886. doi: 10.1152/ajpendo.00508.2010 PubMedCrossRefGoogle Scholar
  102. Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043. doi: 10.1073/pnas.0601945103 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Robinson KM, Janes MS, Beckman JS (2008) The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc 3:941–947. doi: 10.1038/nprot.2008.56 PubMedCrossRefGoogle Scholar
  104. Roumier T, Szabadkai G, Simoni A-M et al (2006) HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death Differ 13:348–351. doi: 10.1038/sj.cdd.4401750 PubMedCrossRefGoogle Scholar
  105. Saaranen MJ, Ruddock LW (2013) Disulfide bond formation in the cytoplasm. Antioxid Redox Signal 19:46–53. doi: 10.1089/ars.2012.4868 PubMedCrossRefGoogle Scholar
  106. Sachdev S, Davies KJA (2008) Production, detection, and adaptive responses to free radicals in exercise. Free Rad Biol Med 44:215–223. doi: 10.1016/j.freeradbiomed.2007.07.019 PubMedCrossRefGoogle Scholar
  107. Sahoo PK, Soltani S, Wong A, Chen YC (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41:233–260CrossRefGoogle Scholar
  108. Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Rad Biol Med 48:642–655. doi: 10.1016/j.freeradbiomed.2009.12.015 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sieprath T, Darwiche R, De Vos WH (2012) Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 421:635–639. doi: 10.1016/j.bbrc.2012.04.058 PubMedCrossRefGoogle Scholar
  110. Sieprath T, Corne TDJ, Nooteboom M et al (2015) Sustained accumulation of prelamin a and depletion of lamin a/c both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 6:1–11. doi: 10.1080/19491034.2015.1050568 CrossRefGoogle Scholar
  111. Smith RL, De Vos WH, de Boer R et al (2015) In vivo visualization and quantification of mitochondrial morphology in C. Elegans. In: Methods in molecular biology. Springer, New York, pp 367–377Google Scholar
  112. Staljanssens D, De Vos WH, Willems P et al (2012) Time-resolved quantitative analysis of CCK1 receptor-induced intracellular calcium increase. Peptides 34:219–225. doi: 10.1016/j.peptides.2011.02.014 PubMedCrossRefGoogle Scholar
  113. Stangherlin A, Reddy AB (2013) Regulation of circadian clocks by redox homeostasis. J Biol Chem 288:26505–26511. doi: 10.1074/jbc.R113.457564 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680. doi: 10.1038/nrd2222 PubMedCrossRefGoogle Scholar
  115. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol-Reg I 286:R431–44. doi: 10.1152/ajpregu.00361.2003 Google Scholar
  116. Thomas C, Mackey MM, Diaz AA, Cox DP (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14:102–108. doi: 10.1179/135100009X392566 PubMedCrossRefGoogle Scholar
  117. Topell S, Hennecke J, Glockshuber R (1999) Circularly permuted variants of the green fluorescent protein. FEBS Lett 457:283–289PubMedCrossRefGoogle Scholar
  118. Touzet O, Philips A (2010) Resveratrol protects against protease inhibitor-induced reactive oxygen species production, reticulum stress and lipid raft perturbation. AIDS 24:1437–1447. doi: 10.1097/QAD.0b013e32833a6114 PubMedCrossRefGoogle Scholar
  119. Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Rad Biol Med 51:1000–1013. doi: 10.1016/j.freeradbiomed.2011.05.017 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Trudeau K, Molina AJA, Roy S (2011) High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes. Invest Ophthalmol Vis Sci 52:8657–8664. doi: 10.1167/iovs.11-7934 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi: 10.1113/jphysiol.2003.049478 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Verkaart S, Koopman WJH, van Emst-de Vries SE et al (2007) Superoxide production is inversely related to complex I activity in inherited complex I deficiency. Bba-Gen Subjects 1772:373–381. doi: 10.1016/j.bbadis.2006.12.009 Google Scholar
  123. Verstraeten VLRM, Broers JLV, van Steensel MAM et al (2006) Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation. Hum Mol Genet 15:2509–2522. doi: 10.1093/hmg/ddl172 PubMedCrossRefGoogle Scholar
  124. Wang X, Fang H, Huang Z et al (2013) Imaging ROS signaling in cells and animals. J Mol Med 91:917–927. doi: 10.1007/s00109-013-1067-4 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Weisiger RA, Fridovich I (1973) Superoxide dismutase – organelle specificity. J Biol Chem 248:3582–3592PubMedGoogle Scholar
  126. Willems PHGM, Rossignol R, Dieteren CEJ et al (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218. doi: 10.1016/j.cmet.2015.06.006 PubMedCrossRefGoogle Scholar
  127. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. doi: 10.1038/nchembio.85 PubMedCrossRefGoogle Scholar
  128. Woolley JF, Stanicka J, Cotter TG (2013) Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem Sci 38:556–565. doi: 10.1016/j.tibs.2013.08.009 PubMedCrossRefGoogle Scholar
  129. Xiang T, Du L, Pham P et al (2015) Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett 364:79–88. doi: 10.1016/j.canlet.2015.04.027 PubMedCrossRefGoogle Scholar
  130. Yu TZ, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653–2658. doi: 10.1073/pnas.0511154103 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Rad Biol Med 34:1359–1368PubMedCrossRefGoogle Scholar
  132. Zhao B, Bilski PJ, He Y-Y et al (2008) Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C) and their cytotoxicity in human keratinocytes. Photochem Photobiol 84:1215–1223. doi: 10.1111/j.1751-1097.2008.00333.x PubMedCrossRefGoogle Scholar
  133. Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721PubMedCrossRefGoogle Scholar
  134. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Rad Biol Med 48:983–1001. doi: 10.1016/j.freeradbiomed.2010.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics gems IV. Academic Press Professional Inc, San DiegoGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tom Sieprath
    • 1
    • 2
  • Tobias D. J. Corne
    • 1
    • 2
  • Peter H. G. M. Willems
    • 3
  • Werner J. H. Koopman
    • 3
  • Winnok H. De Vos
    • 1
    • 2
    Email author
  1. 1.Cell Systems and Imaging Research Group (CSI), Department of Molecular BiotechnologyGhent UniversityGhentBelgium
  2. 2.Laboratory of Cell Biology and Histology, Department of Veterinary SciencesUniversity of AntwerpAntwerpBelgium
  3. 3.Department of Biochemistry (286)Radboud University Medical Centre (RUMC), Radboud Institute for Molecular Life Sciences (RIMLS)NijmegenThe Netherlands

Personalised recommendations