Face Recognition Systems Under Spoofing Attacks

  • Ivana Chingovska
  • Nesli Erdogmus
  • André Anjos
  • Sébastien Marcel
Chapter

Abstract

In this chapter, we give an overview of spoofing attacks and spoofing countermeasures for face recognition systems, with a focus on visual spectrum systems (VIS) in 2D and 3D, as well as near-infrared (NIR) and multispectral systems. We cover the existing types of spoofing attacks and report on their success to bypass several state-of-the-art face recognition systems. The results on two different face spoofing databases in VIS and one newly developed face spoofing database in NIR show that spoofing attacks present a significant security risk for face recognition systems in any part of the spectrum. The risk is partially reduced when using multispectral systems. We also give a systematic overview of the existing anti-spoofing techniques, with an analysis of their advantages and limitations and prospective for future work.

References

  1. 1.
    Flynn, P.J., Faltemier, T., Bowyer, K.W.: 3D face recognition. In: Jain A.K., Flynn P., Ross A.A. (eds.) Handbook of Biometrics, pp. 293–313 (2008)Google Scholar
  2. 2.
    Socolinsky, D.A.: Multispectral face recognition. In: Jain A.K., Flynn P., Ross A.A. (eds.) Handbook of Biometrics, pp. 293–313 (2008)Google Scholar
  3. 3.
    Yi, D., Lei, Z., Zhang, Z., Li, S.: Face anti-spoofing: Multi-spectral approach. In: Marcel, S., Nixon, M.S., Li, S.Z. (eds.) Handbook of Biometric Anti-Spoofing, Advances in Computer Vision and Pattern Recognition, pp. 83–102. Springer, London (2014)Google Scholar
  4. 4.
    Duc, N.M., Minh, B.Q.: Your face is not your password. Black Hat Conference (2009)Google Scholar
  5. 5.
    Thalheim, L., Krissler, J., Ziegler, P.M.: Body check: Biometric access protection devices and their programs put to test. Heise Online (2002)Google Scholar
  6. 6.
    Chingovska, I., et al.: The 2nd competition on counter measures to 2D face spoofing attacks. In: International Conference of Biometrics (ICB) (2013)Google Scholar
  7. 7.
    Pan, G., Sun, L., Wu, Z., Wang, Y.: Monocular camera-based face liveness detection by combining eyeblink and scene context. Telecommun. Syst. 47(3–4), 215–225 (2011)CrossRefGoogle Scholar
  8. 8.
    Tan, X., et al.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. ECCV 6, 504–517 (2010)Google Scholar
  9. 9.
    Zhiwei, Z., et al.: A face antispoofing database with diverse attacks. In: Proceedings of the 5th IAPR International Conference on Biometrics (ICB’12), New Delhi, India (2012)Google Scholar
  10. 10.
    Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: Proceedings of the 11th International Conference of the Biometrics Special Interes Group (2012)Google Scholar
  11. 11.
    Komulainen, J., Anjos, A., Hadid, A., Pietikainen, M., Marcel, S.: Complementary counter-measures for detecting scenic face spoofing attacks (2013)Google Scholar
  12. 12.
    Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: International Joint Conference on Biometrics 2011 (2011)Google Scholar
  13. 13.
    Anjos, A., Chakka, M.M., Marcel, S.: Motion-based counter-measures to photo attacks in face recognition. Inst. Eng. Technol. J. Biometrics (2013)Google Scholar
  14. 14.
    Chingovska, I., Anjos, A., Marcel, S.: Biometrics evaluation under spoofing attacks. IEEE Trans. Inf. Forensics Secur. 9(12), 2264–2276 (2014)CrossRefGoogle Scholar
  15. 15.
    Mansfield, A.J., Wayman, J.L.: Best practices in testing and reporting performance (2002)Google Scholar
  16. 16.
    Jain, A.K., Ross, A.: Handbook of Biometrics, chap. Introduction to Biometrics. Springer, Berlin (2008)Google Scholar
  17. 17.
    Cardinaux, F., Sanderson, C., Marcel, S.: Comparison of MLP and GMM classifiers for face verification on XM2VTS. In: Proceedings of the 4th International Conference on AVBPA. University of Surrey, Guildford, UK (2003)Google Scholar
  18. 18.
    Zhang, W., et al.: Local Gabor binary pattern histogram sequence (lgbphs): A novel non- statistical model for face representation and recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1—Volume 01, ICCV’05, pp. 786–791. IEEE Computer Society (2005)Google Scholar
  19. 19.
    Günther, M., Haufe, D., Wu¨rtz, R.P.: Face recognition with disparity corrected Gabor phase differences. In: Artificial Neural Networks and Machine Learning, Lecture Notes in Computer Science, vol. 7552, pp. 411–418. Springer Berlin (2012)Google Scholar
  20. 20.
    Wallace, R., McLaren, M., McCool, C., Marcel, S.: Inter-session variability modelling and joint factor analysis for face authentication. In: International Joint Conference on Biometrics (2011)Google Scholar
  21. 21.
    Schuckers, S.: Encyclopedia of Biometrics, chap. Liveness Detection: Fingerprint, pp. 924–931. Springer, Berlin (2009)Google Scholar
  22. 22.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Biometrics, chap. Introduction to multi-biometrics. Springer, Berlin (2008)Google Scholar
  23. 23.
    Akhtar, Z., Fumera, G., Marcialis, G.L., Roli, F.: Evaluation of serial and parallel multibiometric systems under spoofing attacks. In: 5th IEEE International Conference on Biometrics: Theory, Applications and Systems (2012)Google Scholar
  24. 24.
    Johnson, P.A., Tan, B., Schuckers, S.: Multimodal fusion vulnerability to non-zero (spoof) imposters. In: IEEE International Workshop on Information Forensics and Security (2010)Google Scholar
  25. 25.
    Rodrigues, R., Kamat, N., Govindaraju, V.: Evaluation of biometric spoofing in a multimodal system. In: Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on (2010)Google Scholar
  26. 26.
    Rodrigues, R.N., Ling, L.L., Govindaraju, V.: Robustness of multimodal biometric fusion methods against spoofing attacks. J. Vis. Lang. Comput. 20(3), 169–179 (2009)CrossRefGoogle Scholar
  27. 27.
    Chetty, G., Wagner, M.: Audio-visual multimodal fusion for biometric person authentication and liveness verification. In: Proceedings of the 2005 NICTA-HCSNet Multimodal User Interaction Workshop—Volume 57, pp. 17–24. Australian Computer Society, Inc. (2006)Google Scholar
  28. 28.
    Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. 1–8 (2007)Google Scholar
  29. 29.
    Wang, L., Ding, X., Fang, C.: Face live detection method based on physiological motion anal- ysis. Tsinghua Sci. Technol. 14(6), 685–690 (2009)CrossRefGoogle Scholar
  30. 30.
    Kollreider, K., Fronthaler, H., Bigun, J.: Verifying liveness by multiple experts in face bio- metrics. In: Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on, pp. 1–6 (2008)Google Scholar
  31. 31.
    Bharadwaj, S., Dhamecha, T., Vatsa, M., Singh, R.: Computationally efficient face spoofing detection with motion magnification. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pp. 105–110 (2013)Google Scholar
  32. 32.
    Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.T.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. (Proceedings SIGGRAPH 2012) 31(4) (2012)Google Scholar
  33. 33.
    Kollreider, K., Fronthaler, H., Bigun, J.: Non-intrusive liveness detection by face images. Image Vis. Comput. 27(3), 233–244 (2009)CrossRefGoogle Scholar
  34. 34.
    Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. 2009 International Conference on Image Analysis and Signal Processing pp. 223–236 (2009)Google Scholar
  35. 35.
    Yan, J., Zhang, Z., Lei, Z., Yi, D., Li, S.Z.: Face liveness detection by exploring multiple scenic clues. In: 12th International Conference on Control, Automation, robotics and Vision (ICARCV 2012). China (2012)Google Scholar
  36. 36.
    Parziale, G., Dittman, J., Tistarelli, M.: Analysis and evaluation of alternatives and advanced solutions for system elements. BioSecure D 9.1.2 (2005)Google Scholar
  37. 37.
    Yang, J., Lei, Z., Liao, S., Li, S.: Face liveness detection with component dependent descriptor. In: Biometrics (ICB), 2013 International Conference on, pp. 1–6 (2013)Google Scholar
  38. 38.
    Li, J., et al.: Live face detection based on the analysis of Fourier spectra. Biometric Technology for Human Identification (2004)Google Scholar
  39. 39.
    Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biometrics 1, 3–10 (2012)Google Scholar
  40. 40.
    Pinto, A.d.S., Pedrini, H., Schwartz, W.R., Rocha, A.: Video-based face spoofing detection through visual rhythm analysis. In: 25th Conference on Graphics, Patterns and Images (2012)Google Scholar
  41. 41.
    Oren, M., Nayar, S.K.: Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision 14(3), 227–251 (1995)Google Scholar
  42. 42.
    Bai, J., et al.: Is physics-based liveness detection truly possible with a single image? In: IEEE International Symposium on Circuits and Systems (ISCAS) (2010)Google Scholar
  43. 43.
    Gao, X., Ng, T.T., Bo, Q., Chang, S.F.: Single-view recaptured image detection based on physics-based features. In: IEEE International Conference on Multimedia & Expo (ICME) (2010)Google Scholar
  44. 44.
    Schwartz, W.R., Rocha, A., Pedrini, H.: Face Spoofing Detection through Partial Least Squares and Low-Level Descriptors. In: International Joint Conference on Biometrics (2011)Google Scholar
  45. 45.
    Tronci, R., et al.: Fusion of multiple clues for photo-attack detection in face recognition systems. In: IJCB, pp. 1–6 (2011)Google Scholar
  46. 46.
    Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: application to iris, fingerprint and face recognition. IEEE Trans. on Image Proc. 23(2), 710–724 (2014)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Anal. and Mach. Intell. 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  48. 48.
    Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: International Joint Conference on Biometrics, pp. 1–7 (2011)Google Scholar
  49. 49.
    de Freitas Pereira, T., et al.: Face liveness detection using dynamic texture. EURASIP J Image and Video Proc. 2014:2 (2014)Google Scholar
  50. 50.
    Zhao, G., Pietika¨inen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  51. 51.
    Komulainen, J., Hadid, A., Pietikainen, M.: Context based face anti-spoofing. In: Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on, pp. 1–8 (2013)Google Scholar
  52. 52.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893 (2005)Google Scholar
  53. 53.
    Wang, T., Yang, J., Lei, Z., Liao, S., Li, S.Z.: Face liveness detection using 3D structure recovered from a single camera. In: Biometrics (ICB), 2013 International Conference on (2013)Google Scholar
  54. 54.
    De Marsico, M., Nappi, M., Riccio, D., Dugelay, J.: Moving face spoofing detection via 3D projective invariants. In: Biometrics (ICB), 2012 5th IAPR International Conference on (2012)Google Scholar
  55. 55.
    Kim, S., Yu, S., Kim, K., Ban, Y., Lee, S.: Face liveness detection using variable focusing. In: Biometrics (ICB), 2013 International Conference on (2013)Google Scholar
  56. 56.
    Frischholz, R., Werner, A.: Avoiding replay-attacks in a face recognition system using head-pose estimation. In: Analysis and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE International Workshop on (2003)Google Scholar
  57. 57.
    Ali, A., Deravi, F., Hoque, S.: Spoofing attempt detection using gaze colocation. In: Biometrics Special Interest Group (BIOSIG), 2013 International Conference of the. IEEE (2013)Google Scholar
  58. 58.
    Chetty, G., Wagner, M.: Multi-level liveness verification for face-voice biometric authentication. In: Biometrics Symposium 2006 (2006)Google Scholar
  59. 59.
    Menotti, D., Chiachia, G., Pinto, A., Schwartz, W., Pedrini, H., Falcao, A., Rocha, A.: Deep representations for iris, face, and fingerprint spoofing detection. Inf. Forensics and Sec., IEEE Trans. on 99, 1 (2015)Google Scholar
  60. 60.
    Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. CoRR abs/1408.5601 (2014)Google Scholar
  61. 61.
    Prokoski, F.J.: Disguise detection and identification using infrared imagery. pp. 27–31 (1983)Google Scholar
  62. 62.
    Pavlidis, I., Symosek, P.: The imaging issue in an automatic face/disguise detection system. In: Computer Vision Beyond the Visible Spectrum: Methods and Applications, 2000. Proceedings. IEEE Workshop on, pp. 15–24 (2000)Google Scholar
  63. 63.
    Kim, Y., Na, J., Yoon, S., Yi, J.: Masked fake face detection using radiance measurements. J. Opt. Soc. Am A 26(4), 760–766 (2009)CrossRefGoogle Scholar
  64. 64.
    Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. pp. 436–441 (2011)Google Scholar
  65. 65.
    Wang, Y., Hao, X., Hou, Y., Guo, C.: A new multispectral method for face liveness detection. In: Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on, pp. 922–926 (2013)Google Scholar
  66. 66.
    Angelopoulou, E.: Understanding the color of human skin. pp. 243–251 (2001)Google Scholar
  67. 67.
    Vink, J., Gritti, T., Hu, Y., de Haan, G.: Robust skin detection using multi-spectral illumination. In: Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on, pp. 448–455 (2011)Google Scholar
  68. 68.
    Raghavendra, R., Raja, K., Busch, C.: Presentation attack detection for face recognition using light field camera. Image Proc., IEEE Trans. on 99, 1 (2015)MathSciNetGoogle Scholar
  69. 69.
    de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: Can face anti-spoofing countermeasures work in a real world scenario? In: International Conference on Biometrics (2013)Google Scholar
  70. 70.
    Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)CrossRefMATHGoogle Scholar
  71. 71.
    Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near infrared images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 627–639 (2007)CrossRefGoogle Scholar
  72. 72.
    Zou, X., Kittler, J., Messer, K.: Ambient illumination variation removal by active Near-IR imaging. In: Zhang D., Jain A.K. (eds.) Advances in Biometrics, Lecture Notes in Computer Science, vol. 3832, pp. 19–25 (2005)Google Scholar
  73. 73.
    Tsalakanidou, F., Dimitriadis, C., Malassiotis, S.: A secure and privacy friendly 2D+3D face authentication system robust under pose and illumination variation. In: Image Analysis for Multimedia Interactive Services, 2007. WIAMIS’07. Eighth International Workshop on, pp. 40–40 (2007)Google Scholar
  74. 74.
    Erdogmus, N., Marcel, S.: Spoofing 2D face recognition systems with 3d masks. In: International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–8 (2013)Google Scholar
  75. 75.
    Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG), pp. 436–441. IEEE (2011)Google Scholar
  76. 76.
    Kose, N., Dugelay, J.L.: Countermeasure for the protection of face recognition systems against mask attacks. In: International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)Google Scholar
  77. 77.
    Kose, N., Dugelay, J.L.: On the vulnerability of face recognition systems to spoofing mask attacks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2357–2361. IEEE (2013)Google Scholar
  78. 78.
    Kose, N., Dugelay, J.L.: Reflectance analysis based countermeasure technique to detect face mask attacks. In: International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE (2013)Google Scholar
  79. 79.
    Kose, N., Dugelay, J.L.: Shape and texture based countermeasure to protect face recognition systems against mask attacks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 111–116. IEEE (2013)Google Scholar
  80. 80.
    Erdogmus, N., Marcel, S.: Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect. In: International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6. IEEE (2013)Google Scholar
  81. 81.
    Erdogmus, N., Marcel, S.: Spoofing face recognition with 3D masks. IEEE Trans. Inf. Forensics Secur. 9(7), 1084–1097 (2014)CrossRefGoogle Scholar
  82. 82.
    Raghavendra, R., Busch, C.: Novel presentation attack detection algorithm for face recognition system: Application to 3D face mask attack. In: International Conference on Image Processing (ICIP), pp. 323–327. IEEE (2014)Google Scholar
  83. 83.
    Kose, N., Dugelay, J.L.: Mask spoofing in face recognition and countermeasures. Image Vis. Comput. 32(10), 779–789 (2014)CrossRefGoogle Scholar
  84. 84.
    Raghavendra, R., Busch, C.: Robust 2d/3d face mask presentation attack detection scheme by exploring multiple features and comparison score level fusion. In: International Conference on Information Fusion (FUSION), pp. 1–7. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ivana Chingovska
    • 1
  • Nesli Erdogmus
    • 2
  • André Anjos
    • 1
  • Sébastien Marcel
    • 1
  1. 1.Idiap Research InstituteMartignySwitzerland
  2. 2.Department of Computer EngineeringIZTECHİzmirTurkey

Personalised recommendations